Soal yang Akan Dibahas
Jika $ A^{2x} = 2 $, maka
$ \frac{A^{5x} - A^{-5x}}{A^{3x} + A^{-3x} } = .... $
A). $\frac{31}{18} \, $ B). $\frac{31}{9} \, $ C). $ \frac{32}{18} \, $ D). $ \frac{33}{9} \, $ E). $ \frac{33}{18} $
A). $\frac{31}{18} \, $ B). $\frac{31}{9} \, $ C). $ \frac{32}{18} \, $ D). $ \frac{33}{9} \, $ E). $ \frac{33}{18} $
$\spadesuit $ Konsep Dasar Eksponen
*). Sifat-sifat eksponen :
$ (a^m)^n = a^{m.n} = (a^n)^m $
$ a^{-n} = \frac{1}{a^n} $
$ a^m . a^n = a^{m+n} $
*). Sifat-sifat eksponen :
$ (a^m)^n = a^{m.n} = (a^n)^m $
$ a^{-n} = \frac{1}{a^n} $
$ a^m . a^n = a^{m+n} $
$\clubsuit $ Pembahasan Cara 3 :
*). Untuk cara 3 ini kita langsung kerjakan soalnya dengan sifat eksponen :
$ \begin{align} \frac{A^{5x} - A^{-5x}}{A^{3x} + A^{-3x} } & = \frac{A^{5x} - \frac{1}{A^{5x}}}{A^{3x} + \frac{1}{A^{3x}} } \\ & = \frac{\frac{A^{5x}. A^{5x}}{A^{5x}} - \frac{1}{A^{5x}}}{ \frac{A^{3x} . A^{3x}}{A^{3x}} + \frac{1}{A^{3x}} } \\ & = \frac{\frac{A^{10x} }{A^{5x}} - \frac{1}{A^{5x}}}{ \frac{A^{6x}}{A^{3x}} + \frac{1}{A^{3x}} } \\ & = \frac{\frac{A^{10x} - 1}{A^{5x}} }{ \frac{A^{6x} + 1 }{A^{3x}} } \\ & = \frac{A^{10x} - 1}{A^{5x}} \times \frac{A^{3x} }{A^{6x} + 1 } \\ & = \frac{(A^{10x} - 1) \times A^{3x} }{A^{5x} \times (A^{6x} + 1) } \\ & = \frac{A^{10x} - 1}{A^{5x - 3x} \times (A^{6x} + 1 )} \\ & = \frac{(A^{2x})^5 - 1}{A^{2x} \times [ (A^{2x})^3 + 1 ]} \\ & = \frac{(2)^5 - 1}{2 \times [ (2)^3 + 1 ]} \\ & = \frac{32 - 1}{2 \times [ 8 + 1 ]} \\ & = \frac{3 1}{2 \times 9} \\ & = \frac{ 31 }{18} \end{align} $
Jadi, nilai $ \frac{A^{5x} - A^{-5x}}{A^{3x} + A^{-3x} } = \frac{ 31 }{18} . \, \heartsuit $
*). Untuk cara 3 ini kita langsung kerjakan soalnya dengan sifat eksponen :
$ \begin{align} \frac{A^{5x} - A^{-5x}}{A^{3x} + A^{-3x} } & = \frac{A^{5x} - \frac{1}{A^{5x}}}{A^{3x} + \frac{1}{A^{3x}} } \\ & = \frac{\frac{A^{5x}. A^{5x}}{A^{5x}} - \frac{1}{A^{5x}}}{ \frac{A^{3x} . A^{3x}}{A^{3x}} + \frac{1}{A^{3x}} } \\ & = \frac{\frac{A^{10x} }{A^{5x}} - \frac{1}{A^{5x}}}{ \frac{A^{6x}}{A^{3x}} + \frac{1}{A^{3x}} } \\ & = \frac{\frac{A^{10x} - 1}{A^{5x}} }{ \frac{A^{6x} + 1 }{A^{3x}} } \\ & = \frac{A^{10x} - 1}{A^{5x}} \times \frac{A^{3x} }{A^{6x} + 1 } \\ & = \frac{(A^{10x} - 1) \times A^{3x} }{A^{5x} \times (A^{6x} + 1) } \\ & = \frac{A^{10x} - 1}{A^{5x - 3x} \times (A^{6x} + 1 )} \\ & = \frac{(A^{2x})^5 - 1}{A^{2x} \times [ (A^{2x})^3 + 1 ]} \\ & = \frac{(2)^5 - 1}{2 \times [ (2)^3 + 1 ]} \\ & = \frac{32 - 1}{2 \times [ 8 + 1 ]} \\ & = \frac{3 1}{2 \times 9} \\ & = \frac{ 31 }{18} \end{align} $
Jadi, nilai $ \frac{A^{5x} - A^{-5x}}{A^{3x} + A^{-3x} } = \frac{ 31 }{18} . \, \heartsuit $