Pembahasan Hiperbola UM UGM 2007 Matematika Ipa

Soal yang Akan Dibahas
Suatu hiperbola mempunyai titik fokus pada sumbu Y. Hiperbola tersebut simetri terhadap sumbu X. Diketahui jarak kedua titik fokus adalah 10 satuan dan jarak kedua titik puncak adalah 8 satuan. Hiperbola tersebut mempunyai persamaan ....
A). $ \frac{x^2}{9} - \frac{y^2}{16} = 1 \, $
B). $ -\frac{x^2}{9} + \frac{y^2}{16} = 1 \, $
C). $ \frac{x^2}{16} - \frac{y^2}{9} = 1 \, $
D). $ -\frac{x^2}{16} + \frac{y^2}{9} = 1 \, $
E). $ -\frac{x^2}{16} + \frac{y^2}{25} = 1 \, $

$\spadesuit $ Konsep Dasar
*). Persamaan hiperbola yang searah sumbu Y (simetris sumbu X) adalah :
$ \, \, \, \, \, -\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 $
Keterangan :
-). $ a $ adalah jarak titik puncak ke titik pusat hiperbola, sehingga jarak kedua puncak sama dengan $ 2a $
-). $ c $ adalah jarak titik fokus ke titik pusat hiperbola, sehingga jarak kedua fokus sama dengan $ 2c $
-). Nilai $ b $ diperoleh dari : $ b^2 = c^2 - a^2 $

$\clubsuit $ Pembahasan
*). Menentukan nilai $ a , c, $ dan $ b $ :
-). Jarak kedua fokus $ = 10 $ sehingga
$ 2c = 10 \rightarrow c = 5 $
-). Jarak kedua titik puncak $ = 8 $ sehingga
$ 2a = 8 \rightarrow a = 4 $
-). Nilai $ b $ :
$ b^2 = c^2 - a^2 = 5^2 - 4^2 = 25 - 16 = 9 $
*). Menyusun persamaan hiperbola :
$ \begin{align} -\frac{x^2}{b^2} + \frac{y^2}{a^2} & = 1 \\ -\frac{x^2}{9} + \frac{y^2}{16} & = 1 \end{align} $
Jadi, persamaan parabolanya $ -\frac{x^2}{9} + \frac{y^2}{16} = 1 . \, \heartsuit $

Pembahasan Trigonometri UM UGM 2007 Matematika Ipa

Soal yang Akan Dibahas
Diketahui segitiga PQR siku-siku di P. Jika $ \sin Q \sin R = \frac{3}{10} $ dan $ \sin (Q- R) = \frac{5}{2}a $ , maka nilai $ a = .... $
A). $ \frac{2}{7} \, $ B). $ \frac{1}{3} \, $ C). $ \frac{1}{5} \, $ D). $ \frac{8}{25} \, $ E). $ \frac{4}{25} \, $

$\spadesuit $ Konsep Dasar
*). Rumus trigonometri :
$ \cos (A + B ) = \cos A \cos B - \sin A \sin B $
$ \cos (A - B ) = \cos A \cos B + \sin A \sin B $
*). Rumus dasar perbandingan trigonometri segitiga siku-siku :
$ \sin x = \frac{depan}{miring} \, $ dan $ \cos x = \frac{samping}{miring} $

$\clubsuit $ Pembahasan
*). Segitiga PQR siku-siku di P sehingga :
$ \begin{align} P + Q + R & = 180^\circ \\ 90^\circ + Q + R & = 180^\circ \\ Q + R & = 90^\circ \\ \cos (Q + R) & = \cos 90^\circ \\ \cos Q \cos R - \sin Q \sin R & = 0 \\ \cos Q \cos R & = \sin Q \sin R \\ \cos Q \cos R & = \frac{3}{10} \end{align} $
*). Dari $ \sin (Q - R) = \frac{5a}{2} = \frac{de}{mi} $
Sehingga :
$ samping = \sqrt{mi^2 - de^2} = \sqrt{2^2 - (5a)^2 } = \sqrt{4 - 25a^2} $
Nilai $ \cos (Q-R) = \frac{sa}{mi} = \frac{\sqrt{4 - 25a^2}}{2} $
*). Menentukan nilai $ a $ :
$ \begin{align} \cos (Q-R) & = \frac{\sqrt{4 - 25a^2}}{2} \\ \cos Q \cos R + \sin Q \sin R & = \frac{\sqrt{4 - 25a^2}}{2} \\ \frac{3}{10} + \frac{3}{10} & = \frac{\sqrt{4 - 25a^2}}{2} \\ \frac{6}{10} & = \frac{\sqrt{4 - 25a^2}}{2} \\ \frac{3}{5} & = \frac{\sqrt{4 - 25a^2}}{2} \, \, \, \, \, \, \, \text{(kuadratkan)} \\ \frac{9}{25} & = \frac{ 4 - 25a^2 }{4} \\ 25( 4 - 25a^2) & = 36 \\ 100 - 625a^2 & = 36 \\ 625a^2 & = 64 \\ a^2 & = \frac{64}{625} \\ a & = \sqrt{ \frac{64}{625} } = \frac{8}{25} \end{align} $
Jadi, nilai $ a = \frac{8}{25} . \, \heartsuit $

Pembahasan Vektor UM UGM 2007 Matematika Ipa

Soal yang Akan Dibahas
Diketahui vektor-vektor $ \vec{a} = (2,2,z) $ , $ \vec{b}= (-8,y,-5 ) $ dan $ \vec{d} = (2x,22-z,8) $ . Jika vektor $ \vec{ a } $ tegak lurus dengan vektor $ \vec{b } $ dan vektor $ \vec{ c } $ sejajar dengan $ \vec{ d} $ , maka $ y + z = .... $
A). $ 5 \, $ B). $ -1 \, $ C). $ 2 \, $ D). $ 1 \, $ E). $ -5 $

$\spadesuit $ Konsep Dasar vektor
*). Mislkan terdapat vektor $ \vec{a} = (a_1,a_2,a_3) \, $ dan $ \vec{b} = (b_1,b_2,b_3) $
-). Perkalian dot :
$ \vec{a} . \vec{b} = a_1.b_1 + a_2.b_2 + a_3.b_3 $
-). syarat vektor $ \vec{a } $ tegak lurus $ \vec{b} $ :
$ \vec{a} . \vec{b} = 0 $
-). syarat vektor $ \vec{a } $ sejajar $ \vec{b} $ :
$ \vec{a} = n .\vec{b} $

$\clubsuit $ Pembahasan
*). vektor $ \vec{a } $ tegak lurus $ \vec{b} $
$ \begin{align} \vec{a} . \vec{b} & = 0 \\ -8.2 + 2.y + (-5). z & = 0 \\ 2y - 5z & = 16 \, \, \, \, \, \, \, \text{....(i)} \end{align} $
*). vektor $ \vec{c } $ sejajar $ \vec{d} $
$ \begin{align} \vec{c} & = n .\vec{d} \\ \left( \begin{matrix} x \\ 4y \\ 4 \end{matrix} \right) & = n.\left( \begin{matrix} 2x \\ 22-z \\ 8 \end{matrix} \right) \\ \left( \begin{matrix} x \\ 4y \\ 4 \end{matrix} \right) & = \left( \begin{matrix} 2nx \\ n(22-z) \\ 8n \end{matrix} \right) \\ 4 & = 8n \rightarrow n = \frac{1}{2} \end{align} $
Sehingga :
$ 4y = n (22-z) \rightarrow 4y = \frac{1}{2}(22-z) $
$ \rightarrow 8y = 22- z \rightarrow z = 22 - 8y $
*). Substitusi $ z = 22 - 8y $ ke pers(i) :
$ \begin{align} 2y - 5z & = 16 \\ 2y - 5( 22 - 8y) & = 16 \\ 2y -110 + 40y & = 16 \\ 42y & = 126 \\ y & = 3 \end{align} $
Nilai $ z = 22 - 8y = 22 - 8.3 = 22 - 24 = -2 $
Nilai $ y + z = 3 + (-2) = 1 $
Jadi, nilai $ y + z = 1 . \, \heartsuit $

Pembahasan Dimensi Tiga UM UGM 2007 Matematika Ipa

Soal yang Akan Dibahas
Alas bidang empat D.ABC berbentuk segitiga siku-siku dama kaki dengan $ \angle BAC = 90^\circ $. Proyeksi D pada segitiga ABC adalah E sehingga E merupakan titik tengah BC. Jika $ AB = AC = p $ dan $ DE = 2p $ , maka $ AD = .... $
A). $ \frac{3}{2}p\sqrt{2} \, $ B). $ \frac{3}{2}p\sqrt{3} \, $ C). $ 3p \, $ D). $ p\sqrt{6} \, $ E). $ p\sqrt{5} $

$\spadesuit $ Konsep Dasar
*). Proyeksi titik ke bidang menghasilkan titik pada bidang tersebut dimana titik awal dan proyeksi membentuk garis yang tegak lurus dengan bidang proyeksinya.

$\clubsuit $ Pembahasan
*). Ilustrasi gambar
 

Panjang $ BC = p\sqrt{2} $
Panjang $ BE = \frac{1}{2}p\sqrt{2} $
*). Karena titik E adalah hasil proyeksi titik D pada bidang ABC, maka garis DE tegak lurus dengan bidang ABC, artinya garis DE tegak lurus dengan semua garis yang ada pada bidang ABC.
*). Segitiga ABE siku-siku di E sehingga :
$ \begin{align} AE & = \sqrt{AB^2 - BE^2} = \sqrt{p^2 - (\frac{1}{2}p\sqrt{2})^2} = \sqrt{\frac{2p^2}{4}} = \frac{1}{2}p\sqrt{2} \end{align} $
*). Segitiga ADE siku-siku di E :
$ \begin{align} AD & = \sqrt{AE^2+DE^2} = \sqrt{(\frac{1}{2}p\sqrt{2})^2 + (2p)^2} \\ & = \sqrt{\frac{2p^2}{4} + 4p^2} = \sqrt{\frac{18p^2}{4} } \\ & = \sqrt{\frac{9p^2}{4} \times 2 } = \frac{3}{2}p\sqrt{2} \end{align} $
Jadi, panjang $ AD = \frac{3}{2}p\sqrt{2} . \, \heartsuit $

Pembahasan Pertidaksamaan UM UGM 2007 Matematika Ipa

Soal yang Akan Dibahas
Semua nilai $ x $ yang memenuhi $ x|x-2| < x - 2 $ adalah ....
A). $ x < -1\, $ atau $ 1 < x < 2 $
B). $ x < -2 $
C). $ -2 < x < -1 $
D). $ x < -1 $
E). $ -2 < x < 1 \, $

$\spadesuit $ Konsep Dasar
*). Definisi Harga Mutlak :
$ \, \, \, \, |f(x)| = \left\{ \begin{array}{cc} f(x) & , \text{ untuk } f(x) \geq 0 \\ -f(x) & , \text{ untuk } f(x) < 0 \end{array} \right. $
*). Langkah-langkah menyelesaikan pertidaksamaan :
1). Menentukan pembuat nol (akar-akarnya),
2). Buat garis bilangan dan tentukan tandanya (+ atau $-$),
3). Arsir daerah yang dimaksud :
Jika $ > 0 $ , maka arsir yang positif,
Jika $ < 0 $ , maka arsir yang negatif.

$\clubsuit $ Pembahasan
*). Dari definisi harga mutlak :
$ | x - 2 | = \left\{ \begin{array}{cc} x - 2 & , \text{ untuk } x \geq 2 \\ -(x - 2) & , \text{ untuk } x < 2 \end{array} \right. $
*). Menyelesaikan soal berdasarkan definisi mutlak :
-). Untuk $ x \geq 2 $ , maka $ | x - 2 | = x - 2 $
$ \begin{align} x|x-2| & < x - 2 \\ x(x - 2) & < x - 2 \\ x^2 - 2x & < x - 2 \\ x^2 - 3x + 2 & < 0 \\ (x - 1)(x - 2) & < 0 \\ x = 1 \vee x & = 2 \end{align} $
garis bilangannya :
 

penyelesaian : $ \{ 1 < x < 2 \} $
Karena syaratnya $ x \geq 2 $ , maka pada kasus pertama ini tidak nilai $ x $ yang memenuhi.

-). Untuk $ x < 2 $ , maka $ | x - 2 | = -(x - 2) = 2 - x $
$ \begin{align} x|x-2| & < x - 2 \\ x(2 - x) & < x - 2 \\ -x^2 + 2x & < x - 2 \\ -x^2 + x + 2 & < 0 \\ (-x - 1)(x -2) & < 0 \\ x = -1 \vee x & = 2 \end{align} $
garis bilangannya :
 

penyelesaian : $ \{ x < - 1 \vee x > 2 \} $
Karena syaratnya $ x < 2 $ , maka Solusinya adalah irisan dari $ \{ x < - 1 \vee x > 2 \} $ dan $ \{ x < 2 \} $ dimana hasilnya adalah $ HP = \{ x < -1 \} $
Jadi, solusinya adalah $ \{ x < -1 \} . \, \heartsuit $