Soal dan Pembahasan SBMPTN 2018 Matematika Dasar Kode 517


Nomor 1
Jika $ x_1 $ dan $ x_2 $ memenuhi $ \left( {}^{27} \log \frac{1}{x+1} \right)^2 = \frac{1}{9} $ , maka nilai $ x_1 x_2 $ adalah ...
A). $ \frac{5}{3} \, $ B). $ \frac{4}{3} \, $ C). $ \frac{1}{3} \, $ D). $ -\frac{2}{3} \, $ E). $ -\frac{4}{3} $
Nomor 2
Jika $ A = \left( \begin{matrix} a & 1 \\ b & 2 \end{matrix} \right) $ , $ B = \left( \begin{matrix} a & 1 \\ 1 & 0 \end{matrix} \right) $ , dan $ AB = \left( \begin{matrix} 10 & a \\ 14 & b \end{matrix} \right) $ , maka nilai $ ab $ adalah ...
A). $ 9 \, $ B). $ 10 \, $ C). $ 12 \, $ D). $ 14 \, $ E). $ 16 $
Nomor 3
Diketahui persegi panjang ABCD dengan $ AB = \sqrt{15} $ cm dan $ AD = \sqrt{5} $ cm. Jika E merupakan titik potong diagonal persegi panjang tersebut, maka besar $ \angle BEC $ adalah ...
A). $ 30^\circ \, $ B). $ 45^\circ \, $ C). $ 60^\circ \, $ D). $ 75^\circ \, $ E). $ 90^\circ $
Nomor 4
Diketahui 10 bilangan genap berurutan. Jika kuartil pertama bilangan-bilangan tersebut adalah 32, maka mediannya adalah ...
A). $ 34 \, $ B). $ 35 \, $ C). $ 36 \, $ D). $ 37 \, $ E). $ 38 \, $
Nomor 5
Himpunan penyelesaian $ x - \sqrt{6-x} \geq 0 $ adalah ...
A). $ \{ x | x \leq -3 \text{ atau } x \geq 2 \} \, $
B). $ \{ x | x \leq -3 \text{ atau } 2 \leq x \leq 6 \} \, $
C). $ \{ x | 0 \leq x \leq 6 \} \, $
D). $ \{ x | 2 \leq x \leq 6 \} \, $
E). $ \{ x | x \leq 6 \} \, $

Nomor 6
Diketahui $ a , b, $ dan $ c $ adalah bilangan real positif dengan $ ab > 1 $. Jika $ x + ay = c $ , $ bx+y=2c $ , dan $ x < y $ , maka ...
A). $ 2a > b- 1 \, $ B). $ 2a > b - 2 \, $ C). $ 2a < b - 3 \, $
D). $ 2a< b - 2 \, $ E). $ 2a < b - 1 $
Nomor 7
Diketahui $ A = \{9, 7, 6, 5, 4, 3, 2,1 \} $ . Lima anggota A diambil secara acak. Peluang terambilnya lima anggota tersebut berjumlah genap adalah ....
A). $ \frac{1}{2} \, $ B). $ \frac{25}{56} \, $ C). $ \frac{5}{12} \, $ D). $ \frac{1}{4} \, $ E). $ \frac{5}{56} $
Nomor 8
Diketahui suatu barisan aritmetika yang terdiri atas empat suku. Jika hasil kali tiga suku pertamanya adalah 10, hasil kali tiga suku terakhirnya adalah $ -8 $, dan hasil penjumlahan dua suku tengahnya adalah $ -1 $, maka hasil kali dua suku tengahnya adalah ...
A). $ -5 \, $ B). $ -2 \, $ C). $ 2 \, $ D). $ 4 \, $ E). $ 10 $
Nomor 9
Titik $ (a,b) $ terletak pada grafik $ y = bx^2 + (1-b^2)x - 49 $. Jika $ ab=6 $ , maka nilai $ a - b $ adalah ...
A). $ 7 \, $ B). $ 5 \, $ C). $ 1 \, $ D). $ -1 \, $ E). $ -5 $
Nomor 10
Diketahui $ x^2+a^2x+b^2 = 0 $ dengan $ a > 0 $ , $ b > 0 $. Jika jumlah akar persamaan tersebut sama dengan $ -(b+1) $ dan hasil perkalian akar-akarnya $ a^2 + 5 $ , maka nilai $ a+b - ab $ adalah ...
A). $ -2 \, $ B). $ -1 \, $ C). $ 0 \, $ D). $ 1 \, $ E). $ 2 $

Nomor 11
Jika fungsi $ f(x) = \frac{1}{x+a} $ , $ g(x) = x^2 + b $, $ (f \circ g) (1) = \frac{1}{2} $ , dan $ (g \circ f)(1) = 2 $ , maka nilai $ ab $ adalah ...
A). $ -1 \, $ B). $ 0 \, $ C). $ \frac{1}{2} \, $ D). $ \frac{3}{2} \, $ E). $ 2 $
Nomor 12
Diketahui fungsi $ f $ dan $ g $ mempunyai invers. Jika $ g(2f(x)) = 2x -1 $ dan $ f(x-2) = x+ 3 $ , maka nilai $ f^{-1}(-1). g^{-1}(-1) $ adalah ...
A). $ -60 \, $ B). $ -50 \, $ C). $ -40 \, $ D). $ -30 \, $ E). $ -20 $
Nomor 13
$ \int \left( \frac{-16-6x^4}{x^2} \right) dx = .... $
A). $ \frac{16}{x} + 2x^3 + C \, $
B). $ \frac{16}{x} - 2x^3 + C \, $
C). $ -\frac{16}{x} - x^3 + C \, $
D). $ -\frac{8}{x} + 2x^3 + C \, $
E). $ \frac{8}{x} - 2x^3 + C $
Nomor 14
Diketahui $ f(x)=x^2 + ax $ dan $ g(x) = x^2 - 2x + a $. Jika $ h(x) = \frac{f(x)}{g(x)} $ dengan $ h(1) = -2 $ , maka nilai $ h^\prime (0) $ adalah ...
A). $ -\frac{3}{2} \, $ B). $ -\frac{1}{6} \, $ C). $ 0 \, $ D). $ 1 \, $ E). $ \frac{3}{2} $
Nomor 15

Diketahui persegi panjang ABCD dengan ukuran panjang 12 cm dan lebar 8 cm. Pada masing-masing sisi, ditetapkan sebuah titik sejauh $ x $ cm dari setiap titik sudut, sehingga terbentuk sebuah segiempat PQRS seperti tampak pada gambar. Luas terkecil yang mungkin dari segiempat PQRS adalah ... cm$^2$.
A). $ 40 \, $ B). $ 46 \, $ C). $ 64 \, $ D). $ 72 \, $ E). $ 85 $

Tidak ada komentar:

Posting Komentar