Nomor 1
Jika $ x_1 $ dan $ x_2 $ memenuhi
$ \left( {}^{3} \log (x+1) \right)^2 = 4 $ , maka nilai
$ x_1 x_2 $ adalah ...
A). $ 8 \, $
B). $ \frac{64}{9} \, $
C). $ -\frac{8}{9} \, $
D). $ -\frac{64}{9} \, $
E). $ -\frac{80}{9} $
Nomor 2
Jika $ A = \left( \begin{matrix} a & 1 \\ b & 2 \end{matrix} \right) $ ,
$ B = \left( \begin{matrix} a & 1 \\ 1 & 0 \end{matrix} \right) $ , dan
$ AB = \left( \begin{matrix} 10 & a \\ 14 & b \end{matrix} \right) $ ,
maka nilai $ ab $ adalah ...
A). $ 9 \, $
B). $ 10 \, $
C). $ 12 \, $
D). $ 14 \, $
E). $ 16 $
Nomor 3
Diketahui persegi panjang ABCD dengan $ AB = \sqrt{15} $ cm dan $ AD = \sqrt{5} $ cm.
Jika E merupakan titik potong diagonal persegi panjang tersebut, maka besar
$ \angle BEC $ adalah ...
A). $ 30^\circ \, $
B). $ 45^\circ \, $
C). $ 60^\circ \, $
D). $ 75^\circ \, $
E). $ 90^\circ $
Nomor 4
Sebelas siswa mengikuti suatu tes. Guru mengumumkan bahwa jangkauan data nilai siswa
tersebut adalah 15. Jika diumumkan tiga siswa memperoleh nilai 100, satu siswa memperoleh
nilai 96, tiga siswa memperoleh nilai 90, serta dia siswa memperoleh nilai 86, maka
nilai dua siswa yang belum diumumkan tersebut yang paling mungkin adalah ...
A). 99 dan 85
B). 99 dan 88
C). 95 dan 91
D). 89 dan 87
E). 85 dan 84
Nomor 5
Himpunan penyelesaian $ x - \sqrt{6-x} \geq 0 $ adalah ...
A). $ \{ x | x \leq -3 \text{ atau } x \geq 2 \} \, $
B). $ \{ x | x \leq -3 \text{ atau } 2 \leq x \leq 6 \} \, $
C). $ \{ x | 0 \leq x \leq 6 \} \, $
D). $ \{ x | 2 \leq x \leq 6 \} \, $
E). $ \{ x | x \leq 6 \} \, $
Nomor 6
Jika A merupakan himpunan semua nilai $ c $ sehingga sistem persamaan linier
$ x - y = 1 $ dan $ cx + y = 1 $ memiliki penyelesaian di kuadran I, maka A = ...
A). $ \{ c | c = -1 \} \, $
B). $ \{ c | c < -1 \} \, $
C). $ \{ c | -1 < c < 1 \} \, $
D). $ \{ c | c = 1 \} \, $
E). $ \{ c | c > 1 \} \, $
Nomor 7
Diketahui $ A = \{9, 7, 6, 5, 4, 3, 2,1 \} $ . Lima anggota A diambil secara acak.
Peluang terambilnya lima anggota tersebut berjumlah genap adalah ....
A). $ \frac{1}{2} \, $
B). $ \frac{25}{56} \, $
C). $ \frac{5}{12} \, $
D). $ \frac{1}{4} \, $
E). $ \frac{5}{56} $
Nomor 8
Diketahui suatu barisan geometri yang terdiri atas empat suku dengan rasio $ \frac{1}{2} $
dan suatu barisan aritmetika yang terdiri atas tiga suku dengan beda $ b $. Jumlah semua
suku barisan geometri tersebut dan jumlah semua suku barisan aritmetika tersebut
masing-masing bernilai 1. Jika suku pertama barisan geometri tersebut sama dengan suku
ketiga barisan aritmetika, maka nilai $ b $ adalah ...
A). $ \frac{1}{15} \, $
B). $ \frac{2}{15} \, $
C). $ \frac{1}{5} \, $
D). $ \frac{1}{3} \, $
E). $ \frac{8}{15} $
Nomor 9
Jika puncak grafik fungsi $ y = px^2 - qx -1 $ sama dengan puncak grafik fungsi
$ y = x^2 - 2x + 4 $, maka nilai $ p + q $ adalah ...
A). $ -12 \, $
B). $ -4 \, $
C). $ 0 \, $
D). $ 4 \, $
E). $ 12 $
Nomor 10
Diketahui $ p > 0 $, serta $ p $ dan $ p^2 - 2 $ merupakan akar $ x^2 - 10x + c = 0 $.
Jika $ c $ merupakan salah satu akar $ x^2 + ax + 42 = 0 $ , maka nilai $ a $ adalah ...
A). $ -23 \, $
B). $ -21 \, $
C). $ -12 \, $
D). $ 21 \, $
E). $ 23 $
Nomor 11
Jika $ f(x) = \frac{1}{(x-1)^2} $ dan $ g(x) = \frac{1}{x-2} $ , maka himpunan
penyelesaian $ \frac{f(x)g(x)}{(f \circ g)(x)} < 0 $ adalah ...
A). $ \{ x | x < 1 \text{ atau } x > 3 \} \, $
B). $ \{ x | x < 1 \text{ atau } 2 < x < 3 \} \, $
C). $ \{ x | x < 1 \text{ atau } 1 < x < 2 \} \, $
D). $ \{ x | 1 < x < 2 \text{ atau } x > 3 \} \, $
E). $ \{ x | 2 < x < 3 \text{ atau } x > 3 \} \, $
Nomor 12
Diketahui fungsi $ f $ dan $ g $ mempunyai invers. Jika $ f(g(x)) = x + 1 $
dan $ g(x+2) = x - 4 $ , maka $ f^{-1}(2) + g^{-1}(2) = ... $
A). $ -5 \, $
B). $ -3 \, $
C). $ 1 \, $
D). $ 3 \, $
E). $ 5 $
Nomor 13
$ \int \left( \frac{-16-6x^4}{x^2} \right) dx = .... $
A). $ \frac{16}{x} + 2x^3 + C \, $
B). $ \frac{16}{x} - 2x^3 + C \, $
C). $ -\frac{16}{x} - x^3 + C \, $
D). $ -\frac{8}{x} + 2x^3 + C \, $
E). $ \frac{8}{x} - 2x^3 + C $
Nomor 14
Diketahui $ f(x)= ax^2 -4x + 1 $ dan $ g(x) = 3x^2 + ax + 2 $. Jika
$ h(x) = f(x) + g(x) $ dan $ k(x) = f(x)g(x) $ dengan $ h^\prime (0) = -3 $ ,
maka nilai $ k^\prime (0) $ adalah ...
A). $ -7 \, $
B). $ -4 \, $
C). $ -3 \, $
D). $ 0 \, $
E). $ 2 $
Nomor 15
Diketahui $ O(0,0) $ , $ A(2,0) $ , $ B(2,y) $ , $ C(0,y) $ , dan $ D(0,\frac{1}{2}y) $.
Nilai $ \displaystyle \lim_{y \to 2 } \frac{\text{keliling } \Delta BCD}{\text{keliling }
\square OABD} $ adalah ...
A). $ \frac{5+2\sqrt{5}}{5} \, $
B). $ \frac{5+\sqrt{5}}{10} \, $
C). $ \frac{1}{2}\sqrt{5} \, $
D). $ \frac{5-2\sqrt{5}}{5} \, $
E). $ \frac{5 - \sqrt{5}}{10} $