Pembahasan Logaritma Simak UI 2018 Matematika Dasar kode 632

Soal yang Akan Dibahas
Jika $ 2 \log \left(a^\frac{3}{2}b^\frac{7}{2}c^\frac{11}{2} \right) - 2\log (bc) = 3\log (b^{x+y}a) - 3\log c^{x-y} $ , maka $ \frac{x}{y} = ... $
A). $ -\frac{2}{3} \, $ B). $ -\frac{2}{5} \, $ C). $ -\frac{2}{7} \, $ D). $ -\frac{2}{9} \, $ E). $ -\frac{2}{11} \, $

$\spadesuit $ Konsep Dasar
*). Sifat - sifat logaritma :
$ n . {}^a \log b = {}^a \log b^n $
$ {}^a \log b - {}^a \log c = {}^a \log \frac{b}{c} $
*). Sifat eksponen :
$ \frac{a^m}{a^n} = a^{m-n} $
$ (a^m)^n = a^{m.n} $
$ (a.b)^n = a^n . b^n $
$ a^{-n} = \frac{1}{a^n } $
*). Persamaan logaritma dan eksponen :
$ {}^a \log f(x) = {}^a \log g(x) \rightarrow f(x) = g(x) $
$ a^x . b^y . c^z = a^m.b^n.c^r \rightarrow x = m, \, y = n , \, $ dan $ z = r $

$\clubsuit $ Pembahasan
*).Menyelesaikan soal :
$\begin{align} 2 \log \left(a^\frac{3}{2}b^\frac{7}{2}c^\frac{11}{2} \right) - 2\log (bc) & = 3\log (b^{x+y}a) - 3\log c^{x-y} \\ \log \left(a^\frac{3}{2}b^\frac{7}{2}c^\frac{11}{2} \right)^2 - \log (bc)^2 & = \log (b^{x+y}a)^3 - \log (c^{x-y})^3 \\ \log \left(a^3b^7c^{11} \right) - \log (b^2c^2) & = \log (b^{3x+3y}a^3) - \log c^{3x-3y} \\ \log \left( \frac{a^3b^7c^{11} }{b^2c^2} \right) & = \log \left( \frac{b^{3x+3y}a^3}{c^{3x-3y}} \right) \\ \frac{a^3b^7c^{11} }{b^2c^2} & = \frac{b^{3x+3y}a^3}{c^{3x-3y}} \\ a^3b^5c^9 & = b^{3x+3y}a^3 c^{-(3x-3y)} \\ a^3b^5c^9 & = b^{3x+3y}a^3 c^{- 3x + 3y } \\ a^3b^5c^9 & = a^3 b^{3x+3y} c^{- 3x + 3y } \end{align} $
Dari bentuk terakhir kita peroleh kesamaan :
$ 3x + 3y = 5 \, $ .....(i)
$ -3x + 3y = 9 \, $ .....(ii)
*). Eliminasi kedua persamaan :
$ \begin{array}{cc} 3x + 3y = 5 & \\ -3x + 3y = 9 & + \\ \hline 6y = 14 & \\ y = \frac{7}{3} & \end{array} $
*). Menentukan nilai $ x $ dari Pers(i):
$ 3x + 3y = 5 \rightarrow 3x + 3. \frac{7}{3} = 5 $
$ \rightarrow 3x = -2 \rightarrow x = \frac{-2}{3} $
*).Menentukan nilai $ \frac{x}{y} $ :
$\begin{align} \frac{x}{y} & = \frac{ \frac{-2}{3} }{\frac{7}{3}} = -\frac{2}{7} \end{align} $
Jadi, nilai $ \frac{x}{y} = -\frac{2}{7} . \, \heartsuit $

Cara 2 Pembahasan eksponen Simak UI 2018 Matematika Dasar kode 632

Soal yang Akan Dibahas
Hasil perkalian semua solusi bilangan real yang memenuhi $ \sqrt[3]{x} = \frac{2}{1 + \sqrt[3]{x}} $ adalah ...
A). $ -8 \, $ B). $ -6 \, $ C). $ 4 \, $ D). $ 6 \, $ E). $ 8 $

$\spadesuit $ Konsep Dasar
*). Sifat Eksponen :
$ \sqrt[n]{a} . \sqrt[n]{b} = \sqrt[n]{a.b} $
$ \sqrt[n]{x} = y \rightarrow x = y^n $
*). Misalkan ada persamaan kuadrat $ ax^2 + bx + c = 0 $ dengan akar-akar $ p_1 $ dan $ p_2 $
-). Operasi perkalian akar-akarnya :
$ p_1 . p_2 = \frac{c}{a} $

$\clubsuit $ Pembahasan
*). Bagaimana jika persamaan yang terbentuk tidak bisa difaktorkan seperti cara pertama? Nah, sebagai alternatif penyelesain kita menggunakan cara 2 ini baik bisa difaktorkan atau tidak.
*).Misalkan $ \sqrt[3]{x} = p $
artinya $ p_1 = \sqrt[3]{x_1} \, $ dan $ p_2 = \sqrt[3]{x_2} $
*).Menyelesaikan soal :
$\begin{align} \sqrt[3]{x} & = \frac{2}{1 + \sqrt[3]{x}} \\ p & = \frac{2}{1 + p} \\ p(1+p) & = 2 \\ p^2 + p - 2 & = 0 \\ p_1 . p_2 & = \frac{c}{a} \\ \sqrt[3]{x_1} . \sqrt[3]{x_2} & = \frac{-2}{1} \\ \sqrt[3]{x_1.x_2} & = -2 \\ x_1.x_2 & = (-2)^3 \\ x_1.x_2 & = -8 \end{align} $
Jadi, hasil perkaliannya adalah $ -8 . \, \heartsuit $

Pembahasan eksponen Simak UI 2018 Matematika Dasar kode 632

Soal yang Akan Dibahas
Hasil perkalian semua solusi bilangan real yang memenuhi $ \sqrt[3]{x} = \frac{2}{1 + \sqrt[3]{x}} $ adalah ...
A). $ -8 \, $ B). $ -6 \, $ C). $ 4 \, $ D). $ 6 \, $ E). $ 8 $

$\spadesuit $ Konsep Dasar
*). Sifat Eksponen :
$ \sqrt[n]{x} = y \rightarrow x = y^n $

$\clubsuit $ Pembahasan
*).Misalkan $ \sqrt[3]{x} = p $
*).Menyelesaikan soal :
$\begin{align} \sqrt[3]{x} & = \frac{2}{1 + \sqrt[3]{x}} \\ p & = \frac{2}{1 + p} \\ p(1+p) & = 2 \\ p^2 + p - 2 & = 0 \\ (p+2)(p-1) & = 0 \\ p = -2 \vee p & = 1 \end{align} $
*).Menentukan nilai $ x $ :
$\begin{align} p = -2 \rightarrow \sqrt[3]{x} & = -2 \\ x & = (-2)^3 \\ x_1 & = -8 \\ p = 1 \rightarrow \sqrt[3]{x} & = 1 \\ x & = 1^3 \\ x_2 & = 1 \end{align} $
*). Menentukan hasil perkaliannya :
$\begin{align} x_1 . x_2 & = -8 . 1 = -8 \end{align} $
Jadi, hasil perkaliannya adalah $ -8 . \, \heartsuit $

Soal dan Pembahasan Simak UI 2018 Matematika Dasar Kode 632


Nomor 1
Hasil perkalian semua solusi bilangan real yang memenuhi $ \sqrt[3]{x} = \frac{2}{1 + \sqrt[3]{x}} $ adalah ...
A). $ -8 \, $ B). $ -6 \, $ C). $ 4 \, $ D). $ 6 \, $ E). $ 8 $
Nomor 2
Jika $ 2 \log \left(a^\frac{3}{2}b^\frac{7}{2}c^\frac{11}{2} \right) - 2\log (bc) = 3\log (b^{x+y}a) - 3\log c^{x-y} $ , maka $ \frac{x}{y} = ... $
A). $ -\frac{2}{3} \, $ B). $ -\frac{2}{5} \, $ C). $ -\frac{2}{7} \, $ D). $ -\frac{2}{9} \, $ E). $ -\frac{2}{11} \, $
Nomor 3
Persamaan kuadrat $ x^2 + (a+6)x + 9a-1 = 0 $ mempunyai 2 akar real berbeda $ x_1 $ , $ x_2 $ dengan $ a < 0 $. Jika $ x_1^2 + x_1x_2+x_2^2 = -12a + 1 $ , maka $ a^2 + a = ... $
A). $ 4 \, $ B). $ 6 \, $ C). $ 64 \, $ D). $ 96 \, $ E). $ 156 $
Nomor 4
Diberikan sistem $ ax+8y=1 $ , $ 3x+(a+10)y=6 $. Agar sistem tersebut memiliki tepat satu solusi, maka $ a = ... $
A). $ \{ a \in R : a \neq 12 \text{ dan } a \neq 2 \} \, $
B). $ \{ a \in R : a \neq 6 \text{ dan } a \neq 4 \} \, $
C). $ \{ a \in R : a \neq 12 \text{ dan } a \neq -2 \} \, $
D). $ \{ a \in R : a \neq -12 \text{ dan } a \neq 2 \} \, $
E). $ \{ a \in R : a \neq 6 \text{ dan } a \neq -4 \} \, $
Nomor 5
Himpunan penyelesaian dari pertidaksamaan $ \sqrt{x^2 - 4} \leq 3 - x $ adalah ...
A). $ \{ x \in R : x \leq -2 \text{ atau } 2 \leq x \leq \frac{13}{6} \} \, $
B). $ \{ x \in R : x \leq -2 \text{ atau } 2 \leq x \} \, $
C). $ \{ x \in R : -2 \leq x \leq \frac{13}{6} \} \, $
D). $ \{ x \in R : x \leq \frac{13}{6} \} \, $
E). $ \{ x \in R : 2 \leq x \leq \frac{13}{6} \} \, $

Nomor 6
Sembilan buah bilangan membentuk deret aritmetika dan mempunyai jumlah 153. Jika pada setiap 2 suku yang berurutan pada deret tersebut disisipkan rata-rata dari 2 suku tersebut, jumlah deret yang baru adalah ...
A). $ 267 \, $ B). $ 279 \, $ C). $ 289 \, $ D). $ 315 \, $ E). $ 349 $
Nomor 7
Diberikan $ B = \left( \begin{matrix} \cos \theta & -\sin \theta \\ \sin \theta & b \end{matrix} \right) $. Jika $ B^{-1} = B^T $ , maka $ b = ... $
A). $ \sin \theta \, $ B). $ -\sin \theta \, $ C). $ \cos \theta \, $
D). $ -\cos \theta \, $ E). $ \tan \theta $
Nomor 8
Daerah R persegi panjang yang memiliki titik sudut $ (-1,1) $ , $ (4,1) $ , $ (-1,-5) $ dan $ (4,-5) $. Suatu titik akan dipilih dari R. Probabilitas akan terpilih titik yang berada di atas garis $ y = \frac{3}{2}x - 5 $ adalah ...
A). $ \frac{1}{5} \, $ B). $ \frac{2}{5} \, $ C). $ \frac{3}{5} \, $ D). $ \frac{1}{4} \, $ E). $ \frac{3}{4} $
Nomor 9
Diketahui $ f $ adalah fungsi kuadrat yang mempunyai garis singgung $ y = -x+1 $ di titik $ x = -1 $. Jika $ f^\prime (1) = 3 $ , maka $ f(4) = ... $
A). $ 11 \, $ B). $ 12 \, $ C). $ 14 \, $ D). $ 17 \, $ E). $ 22 $
Nomor 10
Diberikan himpunan huruf {a,i,u,e,o,k,l,m,n,r,p,q}. Banyak cara menyusun huruf-huruf tersebut sehingga tidak ada vokal yang berdampingan adalah ...
A). $ \frac{5!.7!}{2!} \, $ B). $ \frac{5!.7!}{3!} \, $ C). $ \frac{6!.8!}{3!} \, $
D). $ \frac{7!.8!}{3!} \, $ E). $ \frac{7!.8!}{2!} $

Nomor 11
Diberikan sebuah segitiga siku-siku ABC yang siku-siku di B dengan $ AB = 6 $ dan $ BC = 8 $. Titik M, N berturut-turut berada pada sisi AC sehingga $ AM : MN : NC = 1 : 2 : 3 $. Titik P dan Q secara berurutan berada pada sisi AB dan BC sehingga AP tegak lurus PM dan BQ tegak lurus QN. Luas segilima PMNQB adalah ...
A). $ 21\frac{1}{3} \, $ B). $ 20\frac{1}{3} \, $ C). $ 19\frac{1}{3} \, $ D). $ 18\frac{1}{3} \, $ E). $ 17\frac{1}{3} $
Nomor 12
Jika $ f(x) = ax + b $ dan $ f^{-1} (x) = bx + a $ dengan $ a, b \in R $, maka $ (a+b)^2 = ... $
A). $ 0 \, $ B). $ 1 \, $ C). $ 2 \, $ D). $ 4 \, $ E). $ 9 $
Nomor 13
Gunakan petunjuk C.
Diketahui fungsi $ f(x) $ adalah fungsi linear dan $ g(x) = \frac{2x+1}{x} + 1 $ . Jika $ (g \circ f)(x) = 3 + \frac{1}{2x+1} $ , pernyataan yang benar adalah ...
(1). $ a - b = 1 $
(2). $ a - b = 2 $
(3). $ a + b = 3 $
(4). $ a + b = 4 $
Nomor 14
Gunakan petunjuk C.
Jika $ f(x) = \frac{1}{x^2 + 4} $ , maka ...
(1). $ f^\prime (0) \, $ tidak ada
(2). $ f^\prime (-1) = \frac{1}{25} $
(3). fungsi naik untuk $ x > 0 $
(4). $ y = -\frac{2}{25}x + \frac{7}{25} \, $ adalah persamaan garis singgung di $ x = 1 $
Nomor 15
Gunakan petunjuk C.
Rata-rata tiga bilangan adalah 10 lebihnya dibandingkan dengan bilangan terkecil dan 8 kurangnya dibandingkan dengan bilangan terbesar. Jika median ketiga bilangan tersebut adalah 14, maka ...
(1). jangkauannya adalah 18
(2). variansinya adalah 84
(3). jumlahnya adalah 36
(4). simpangan rata-ratanya adalah $ \frac{20}{3} $


Pembahasan Lingkaran SM Unram 2018 Matematika Ipa

Soal yang Akan Dibahas
Gunakan petunjuk B :
Keliling lingkaran yang berjari-jari 10 cm adalah 62,8 cm
$ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, $ SEBAB
Nilai phi adalah hasil bagi keliling dengan diameter

$\spadesuit $ Konsep Dasar
*). RUmus keliling lingkaran :
Keliling lingkaran = $ 2\pi r $ atau K $ = \pi d $
Keterangan :
$ r = \, $ jari-jari
$ d = 2r = \, $ diameter
$ \pi = \frac{22}{7} $ atau $ \pi = 3,14 $

$\clubsuit $ Pembahasan
*). Analisa kedua pernyataan :
-). Pernyataan pertama :
"Keliling lingkaran yang berjari-jari 10 cm adalah 62,8 cm" bernilai BENAR.
K $ = 2\pi r = 2 \times 3,14 \times 10 = 62,8 \, $ cm
-). Pernyataan kedua :
"Nilai phi adalah hasil bagi keliling dengan diameter" bernilai BENAR.
$ K = \pi d \rightarrow \pi = \frac{K}{d} $
-). Kedua pernyataan memiliki hubungan SEBAB-AKIBAT.
Sehingga pernyataannya bernilai BENAR-BENAR dan berhubungan, jawabannya A.
Jadi, pernyataan bernilai BENAR-BENAR berhubungan $ . \, \heartsuit $

Pembahasan Bangun Datar SM Unram 2018 Matematika Ipa

Soal yang Akan Dibahas
Gunakan petunjuk B :
Luas daerah belah ketupat ABCD adalah setengah dari hasil kali diagonal-diagonalnya
$ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, $ SEBAB
Bangun datar belah ketupat diagonal-diagonalnya saling tegak lurus dan membagi dua sama panjang

$\spadesuit $ Konsep Dasar
*). RUmus luas belah ketupat :
Luas belah ketupat = $ \frac{1}{2} \times d_1 \times d_2 $
Keterangan :
$ d_1 = \, $ diagonal pertama
$ d_2 = \, $ diagonal kedua
*). Belah ketupat memiliki diagonal-diagonalnya saling tegak lurus dan membagi dua sama panjang

$\clubsuit $ Pembahasan
*). Analisa kedua pernyataan :
-). Pernyataan pertama :
"Luas daerah belah ketupat ABCD adalah setengah dari hasil kali diagonal-diagonalnya" bernilai BENAR.
-). Pernyataan kedua :
"Bangun datar belah ketupat diagonal-diagonalnya saling tegak lurus dan membagi dua sama panjang " bernilai BENAR.
-). Kedua pernyataan memiliki hubungan SEBAB-AKIBAT.
Sehingga pernyataannya bernilai BENAR-BENAR dan berhubungan, jawabannya A.
Jadi, pernyataan bernilai BENAR-BENAR berhubungan $ . \, \heartsuit $

Pembahasan Pertidaksamaan SM Unram 2018 Matematika Ipa

Soal yang Akan Dibahas
Gunakan petunjuk B :
Pernyataan setiap $ x $ bilangan Cacah, $ x + 3 \geq 3 $ bernilai benar
$ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, $ SEBAB
Setiap $ x $ bilangan Cacah, $ x + 3 $ bilangan ganjil

$\spadesuit $ Konsep Dasar
*). Himpunan bilangan Cacah = {0, 1, 2, 3, ...}

$\clubsuit $ Pembahasan
*). Analisa kedua pernyataan :
-). Pernyataan pertama :
"Pernyataan setiap $ x $ bilangan Cacah, $ x + 3 \geq 3 $ bernilai benar" adalah TEPAT (BENAR).
Kita cek beberapa bilangan cacah :
$ \begin{align} x + 3 & \geq 3 \\ x = 0 \rightarrow 0 + 3 & \geq 3 \, \, \text{(BENAR)} \\ x = 1 \rightarrow 1 + 3 & \geq 3 \, \, \text{(BENAR)} \\ x = 2 \rightarrow 2 + 3 & \geq 3 \, \, \text{(BENAR)} \\ x = 3 \rightarrow 3 + 3 & \geq 3 \, \, \text{(BENAR)} \\ ......& \end{align} $
-). Pernyataan kedua :
"Setiap $ x $ bilangan Cacah, $ x + 3 $ bilangan ganjil " bernilai SALAH.
Contohnya kita ambil $ x = 1 \rightarrow x + 3 = 1 + 3 = 4 \, $ adalah bilangan genap.
Sehingga pernyataannya bernilai BENAR-SALAH, jawabannya D.
Jadi, pernyataan bernilai BENAR-SALAH $ . \, \heartsuit $

Pembahasan Modus SM Unram 2018 Matematika Ipa

Soal yang Akan Dibahas
Gunakan petunjuk B :
Nilai Modus dari data 3, 4, 5, 5, 6, 6, 7, 8, 9, adalah $ 5,5 $
$ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, $ SEBAB
5 dan 6 adalah data dengan frekuensi terbanyak.

$\spadesuit $ Konsep Dasar
*). Modus adalah nilai yang sering muncul atau nilai yang memiliki frekuensi terbanyak.

$\clubsuit $ Pembahasan
*). Analisa kedua pernyataan :
-). Pernyataan pertama :
"Nilai Modus dari data 3, 4, 5, 5, 6, 6, 7, 8, 9, adalah $ 5,5 $" bernilai SALAH karena modusnya adalah 5 dan 6.
-). Pernyataan kedua :
"5 dan 6 adalah data dengan frekuensi terbanyak." bernilai BENAR.
Sehingga pernyataannya bernilai SALAH-BENAR, jawabannya C.
Jadi, pernyataan bernilai SALAH-BENAR $ . \, \heartsuit $