Pembahasan Trigonometri Simak UI 2018 Matematika IPA kode 416

Soal yang Akan Dibahas
Gunakan petunjuk C.
Jika $ \alpha = -\frac{\pi}{12} $ , maka ....
(1). $ \sin ^4 \alpha + \cos ^4 \alpha = \frac{6}{8} \, $
(2). $ \sin ^6 \alpha + \cos ^6 \alpha = \frac{12}{16} \, $
(3). $ \cos ^4 \alpha = \frac{1}{2} -\frac{1}{4}\sqrt{3} \, $
(4). $ \sin ^4 \alpha = \frac{7}{16} - \frac{1}{4}\sqrt{3} \, $

$\spadesuit $ Konsep Dasar
*). identitas trigonometri :
$ \sin ^2 x + \cos ^2 x = 1 $
*). Rumus sudut rangkap :
$ \cos ^2 x = \frac{1}{2}(1 + \cos 2x ) $
$ \sin ^2 x = \frac{1}{2}(1 - \cos 2x ) $
$ \sin x \cos x = \frac{1}{2} \sin 2x $
*). Sudut negatif :
$ \sin (-x) = -\sin x $ dan $ \cos (-x) = \cos x $
*). Sifat eksponen :
$ a^4 + b^4 = (a^2 + b^2 )^2 - 2 (a.b)^2 $
$ a^6 + b^6 = (a^4 + b^4)(a^2 + b^2) - (ab)^2(a^2 + b^2) $

$\clubsuit $ Pembahasan
*). Diketahui $ \alpha = -\frac{\pi}{12} $ dengan $ \pi = 180^\circ $
*). Menentukan beberapa nilai :
$\begin{align} \cos 2 \alpha & = \cos 2 . (-\frac{\pi}{12}) = \cos 30^\circ = \frac{1}{2}\sqrt{3} \\ \sin 2 \alpha & = \sin 2 . (-\frac{\pi}{12}) = -\sin 30^\circ = -\frac{1}{2} \\ \sin \alpha . \cos \alpha & = \frac{1}{2} \sin 2 \alpha = \frac{1}{2} . (-\frac{1}{2}) = -\frac{1}{4} \end{align} $

*). Kita cek keempat pernyataan :
(1). $ \sin ^4 \alpha + \cos ^4 \alpha = \frac{6}{8} \, $ ?
$ \begin{align} \sin ^4 \alpha + \cos ^4 \alpha & = (\sin ^2 \alpha + \cos ^2 \alpha)^2 - 2(\sin \alpha . \cos \alpha )^2 \\ & = (1)^2 - 2(- \frac{1}{4} )^2 \\ & = 1 - 2( \frac{1}{16} ) = 1 - \frac{1}{8} = \frac{7}{8} \end{align} $
Pernyataan (1) SALAH.

(2). $ \sin ^6 \alpha + \cos ^6 \alpha = \frac{12}{16} \, $ ?
$ \begin{align} & \sin ^6 \alpha + \cos ^6 \alpha \\ & = (\sin ^4 \alpha + \cos ^4 \alpha )(\sin ^2 \alpha + \cos ^2 \alpha ) - (\sin x \cos x)^2 (\sin ^2 \alpha + \cos ^2 \alpha) \\ & = ( \frac{7}{8} )(1) - ( -\frac{1}{4} )^2 (1) \\ & = \frac{7}{8} - \frac{1}{16} = \frac{13}{16} \end{align} $
Pernyataan (2) SALAH.

(3). $ \cos ^4 \alpha = \frac{1}{2} -\frac{1}{4}\sqrt{3} \, $ ?
$ \begin{align} \cos ^4 \alpha & = \cos ^2 \alpha . \cos ^2 \alpha \\ & = \frac{1}{2}(1 + \cos 2 \alpha ) . \frac{1}{2}(1 + \cos 2 \alpha ) \\ & = \frac{1}{4}(1 + \cos 2 \alpha )^2 \\ & = \frac{1}{4}(1 + \frac{1}{2}\sqrt{3} )^2 \\ & = \frac{1}{4}(1 + \sqrt{3} + \frac{3}{4} ) \\ & = \frac{1}{4}(\frac{7}{4} + \sqrt{3} ) \\ & = \frac{7}{16} + \frac{1}{4}\sqrt{3} \end{align} $
Pernyataan (3) SALAH.

(4). $ \sin ^4 \alpha = \frac{7}{16} - \frac{1}{4}\sqrt{3} \, $ ?
$ \begin{align} \sin ^4 \alpha & = \sin ^2 \alpha . \sin ^2 \alpha \\ & = \frac{1}{2}(1 - \cos 2 \alpha ) . \frac{1}{2}(1 - \cos 2 \alpha ) \\ & = \frac{1}{4}(1 - \cos 2 \alpha )^2 \\ & = \frac{1}{4}(1 - \frac{1}{2}\sqrt{3} )^2 \\ & = \frac{1}{4}(1 - \sqrt{3} + \frac{3}{4} ) \\ & = \frac{1}{4}(\frac{7}{4} - \sqrt{3} ) \\ & = \frac{7}{16} - \frac{1}{4}\sqrt{3} \end{align} $
Pernyataan (4) BENAR.

Sehingga pernyataan (4) yang BENAR, jawabannya D.
Jadi, yang BENAR adalah pernyataan (4) $ . \, \heartsuit $

Cara 2 Pembahasan Pertidaksamaan Simak UI 2018 Matematika IPA kode 416

Soal yang Akan Dibahas
Himpunan penyelesaian $ 16 - x^2 \leq |x+4| $ adalah ....
A). $ \{ x \in R : -4 \leq x \leq 4 \} \, $
B). $ \{ x \in R : -4 \leq x \leq 3 \} \, $
C). $ \{ x \in R : x \leq -4 \text{ atau } x \geq 4 \} \, $
D). $ \{ x \in R : 0 \leq x \leq 3 \} \, $
E). $ \{ x \in R : x \leq -4 \text{ atau } x \geq 3 \} $

$\spadesuit $ Konsep Dasar :
*). Untuk menyelesaikan soal pertidaksamaan yang ada opsinya (pilihan gandanya), kita bisa langsung substitusi angka-angka dari opsionnya yang kita sebut metode SUKA.

$\clubsuit \, $ Cara II : Metode Suka (substitusi angka)
Metode Suka maksudnya kita memilih angka atau nilai $x$ dari pilihan, lalu disubstitusikan ke pertidaksamaannya. Metode ini hanya membutuhkan ketelitian berhitung.
$\begin{align} \text{Pilih} \, x=0 \Rightarrow 16 - x^2 & \leq |x+4| \\ 16 - 0^2 & \leq |0+4| \\ 16 & \leq 4 \, \, \text{(SALAH)} \\ \end{align}$
yang ada $ x = 0 $ SALAH, opsi yang benar adalah C dan E
$\begin{align} \text{Pilih} \, x=3 \Rightarrow 16 - x^2 & \leq |x+4| \\ 16 - 3^2 & \leq |3+4| \\ 7 & \leq 7 \, \, \text{(BENAR)} \\ \end{align}$
yang ada $ x = 3 $ BENAR, opsi yang benar adalah E
Sehingga opsi yang benar adalah opsi E (yang tersisa).
Jadi, solusinya adalah $ \{ x \leq -4 \text{ atau } x \geq 3 \} . \, \heartsuit $

Pembahasan Pertidaksamaan Simak UI 2018 Matematika IPA kode 416

Soal yang Akan Dibahas
Himpunan penyelesaian $ 16 - x^2 \leq |x+4| $ adalah ....
A). $ \{ x \in R : -4 \leq x \leq 4 \} \, $
B). $ \{ x \in R : -4 \leq x \leq 3 \} \, $
C). $ \{ x \in R : x \leq -4 \text{ atau } x \geq 4 \} \, $
D). $ \{ x \in R : 0 \leq x \leq 3 \} \, $
E). $ \{ x \in R : x \leq -4 \text{ atau } x \geq 3 \} $

$\spadesuit $ Konsep Dasar
*). Langkah-langkah menyelesaikan pertidaksamaan :
1). Nol kan salah satu ruas, kemudian kita tentukan akar-akarnya,
2). Buat garis bilangan dan tentukan tanda (+ atau $-$),
3). Arsir daerah yang diinginkan :
Jika $ < 0 $ , maka pilih daerah negatif,
Jika $ > 0 $ , maka pilih daerah positif.
4). Buat himpunan penyelesaiannya.
*). Definisi nilai mutlak :
$ |f(x)| = \left\{ \begin{array}{cc} f(x) & , \text{ untuk } f(x) \geq 0 \\ -f(x) & , \text{ untuk } f(x) < 0 \end{array} \right. $
Dari definisi di atas, penyelesaiannya di gabungkan $ ( \cup ) $

$\clubsuit $ Pembahasan
*). Diketahui $ 16 - x^2 \leq |x+4| $
*). Definisi nilai mutlak untuk $ | x + 4| $ :
$ |x+4| = \left\{ \begin{array}{cc} x+4 & , \text{ untuk } x \geq -4 \\ -(x+4) & , \text{ untuk } x < -4 \end{array} \right. $
*). Menyelesaikan pertidaksamaannya :
-). untuk $ x \geq -4 $ , maka $ |x+4| = x+4 $
$\begin{align} 16 - x^2 & \leq |x+4| \\ 16 - x^2 & \leq x + 4 \\ - x^2 - x + 12 & \leq 0 \\ (-x +3)(x +4) & \leq 0 \\ x = 3 \vee x & = -4 \end{align} $
garis bilangan pertama :
 

dari syarat $ x \geq -4 $ dan daerah garis bilangan di atas kita peroleh :
$ HP_1 = \{ x = -4 \vee x \geq 3 \} $
-). untuk $ x < -4 $ , maka $ |x+4| = -(x+4) $
$\begin{align} 16 - x^2 & \leq |x+4| \\ 16 - x^2 & \leq -(x + 4) \\ - x^2 + x + 20 & \leq 0 \\ (-x -4)(x -5) & \leq 0 \\ x = -4 \vee x & = 5 \end{align} $
garis bilangan kedua :
 

dari syarat $ x < -4 $ dan daerah garis bilangan kedua di atas kita peroleh :
$ HP_2 = \{ x < -4 \} $
-). Solusi totalnya adalah gabungan kedua himpunan :
$\begin{align} HP & = HP_1 \cup HP_2 \\ & = \{ x = -4 \vee x \geq 3 \} \cup \{ x < -4 \} \\ & = \{ x \leq -4 \vee x \geq 3 \} \end{align} $
Jadi, solusinya $ \{ x \leq -4 \vee x \geq 3 \} . \, \heartsuit $

Soal dan Pembahasan Simak UI 2018 Matematika Ipa Kode 416


Nomor 1
DIketahui suku banyak $ f(x) $ dibagi $ x^2 + x - 2 $ bersisa $ ax+b $ dan dibagi $ x^2 - 4x + 3 $ bersisa $ 2bx+a-1 $. Jika $ f(-2) = 7 $ , maka $ a^2 + b^2 = .... $
A). $ 12 \, $ B). $ 10 \, $ C). $ 9 \, $ D). $ 8 \, $ E). $ 5 $
Nomor 2
Himpunan penyelesaian $ 16 - x^2 \leq |x+4| $ adalah ....
A). $ \{ x \in R : -4 \leq x \leq 4 \} \, $
B). $ \{ x \in R : -4 \leq x \leq 3 \} \, $
C). $ \{ x \in R : x \leq -4 \text{ atau } x \geq 4 \} \, $
D). $ \{ x \in R : 0 \leq x \leq 3 \} \, $
E). $ \{ x \in R : x \leq -4 \text{ atau } x \geq 3 \} $
Nomor 3
Jika $ x_1 $ dan $ x_2 $ memenuhi persamaan $ 2\sin ^2 x - \cos x = 1 $ , $ 0 \leq x \leq \pi $ , maka nilai $ x_1 + x_2 $ adalah ....
A). $ \frac{\pi}{3} \, $ B). $ \frac{2\pi}{3} \, $ C). $ \pi \, $ D). $ \frac{4}{3}\pi \, $ E). $ 2\pi $
Nomor 4
Jika $ \displaystyle \lim_{x \to -3} \frac{\frac{1}{ax}+\frac{1}{3}}{bx^3+27} = -\frac{1}{3^5} $ , maka nilai $ a + b $ untuk $ a $ dan $ b $ bulat positif adalah ....
A). $ -4 \, $ B). $ -2 \, $ C). $ 0 \, $ D). $ 2 \, $ E). $ 4 \, $
Nomor 5
Jika $ f(x) $ fungsi kontinu di interval $ [1,30] $ dan $ \int \limits_6^{30} f(x) dx = 30 $ , maka $ \int \limits_1^9 f(3y+3) dy = .... $
A). $ 5 \, $ B). $ 10 \, $ C). $ 15 \, $ D). $ 18 \, $ E). $ 27 \, $

Nomor 6
Pada balok ABCD.EFGH, dengan $ AB = 6, \, BC = 3 $ , dan $ CG = 2 $ , titik M, N, dan O masing-masing terletak pada rusuk EH, FG, dan AD. Jika $ 3EM = EH $ , $ FN = 2NG $ , $ 3DO = 2DA $ , dan $ \alpha $ adalah bidang irisan balok yang melalui M, N, O, perbandingan luas bidang $ \alpha $ dengan luas permukaan balok adalah ....
A). $ \frac{\sqrt{35}}{36} \, $ B). $ \frac{\sqrt{37}}{36} \, $ C). $ \frac{\sqrt{38}}{36} \, $ D). $ \frac{\sqrt{39}}{36} \, $ E). $ \frac{\sqrt{41}}{36} $
Nomor 7
DIberikan kubus ABCD.EFGH. Sebuah titik P terletak pada rusuk CG sehingga $ CP:PG=5:2$ . Jika $ \alpha $ adalah sudut terbesar yang terbentuk antara rusuk CG dan bidang PBD, maka $ \sin \alpha = .... $
A). $ -\frac{7\sqrt{11}}{33} \, $ B). $ -\frac{7\sqrt{11}}{44} \, $ C). $ \frac{7\sqrt{11}}{33} \, $ D). $ \frac{7\sqrt{11}}{44} \, $ E). $ \frac{7\sqrt{11}}{55} $
Nomor 8
Jika $ 3^x + 5^y = 18 $, maka nilai maksimum $ 3^x.5^y $ adalah ....
A). $ 72 \, $ B). $ 80 \, $ C). $ 81 \, $ D). $ 86 \, $ E). $ 88 $
Nomor 9
Diketahui $ sx-y=0 $ adalah garis singgung sebuah lingkaran yang titik pusatnya berada di kuadran ketiga dan berjarak 1 satuan ke sumbu X. Jika lingkaran tersebut menyinggung sumbu X dan titik pusatnya dilalui garis $ x = -2 $ , maka nilai $ 3s $ adalah ....
A). $ \frac{1}{6} \, $ B). $ \frac{4}{3} \, $ C). $ 3 \, $ D). $ 4 \, $ E). $ 6 $
Nomor 10
Jika kurva $ y = (a-2)x^2+ \sqrt{3}(1-a)x + (a-2) $ selalu berada di atas sumbu X, bilangan bulat terkecil $ a - 2 $ yang memenuhi adalah ....
A). $ 6 \, $ B). $ 7 \, $ C). $ 8 \, $ D). $ 9 \, $ E). $ 10 $

Nomor 11
Jika $ a+b-c=2 $ , $ a^2+b^2-4c^2 = 2$ , dan $ ab = \frac{3}{2}c^2 $ , maka nilai $ c $ adalah ....
A). $ 0 \, $ B). $ 1 \, $ C). $ 2 \, $ D). $ 3 \, $ E). $ 6 $
Nomor 12
Jika $ S_n \, $ adalah jumlah sampai suku ke-$n$ dari barisan geometri, $ S_1 + S_6 = 1024 $ , dan $ S_3 \times S_4 = 1023 $ , maka $ \frac{S_{11}}{S_8} = .... $
A). $ 3 \, $ B). $ 16 \, $ C). $ 32 \, $ D). $ 64 \, $ E). $ 254 $
Nomor 13
Gunakan petunjuk C.
Jika vektor $ \vec{u} = (2, -1, 2) $ dan $ \vec{v} = (4, 10, -8) $, maka ....
(1). $ \vec{u} + k\vec{v} $ tegak lurus $ \vec{u} $ bila $ k = \frac{17}{18} $
(2). sudut antara $ \vec{u} $ dan $ \vec{v} $ adalah tumpul
(3). $ || \text{proy}_\vec{u} \vec{v} || = 6 $
(4). jarak antara $ \vec{u} $ dan $ \vec{v} $ sama dengan $ || \vec{u} + \vec{v} || $
Nomor 14
Gunakan petunjuk C.
Jika $ y = \frac{1}{3}x^3 - ax + b $ , $ a > 0 $ , dan $ a,b \in R $, maka ....
(1). nilai minimum lokal $ y = b - \frac{2}{3}a^\frac{3}{2} $
(2). nilai maksimum lokal $ y = b + \frac{2}{3}a^\frac{3}{2} $
(3). $ y $ stasioner saat $ x = a^\frac{1}{2} $
(4). naik pada interval $ \left[ -\infty , -a^\frac{1}{2} \right] $
Nomor 15
Gunakan petunjuk C.
Jika $ \alpha = -\frac{\pi}{12} $ , maka ....
(1). $ \sin ^4 \alpha + \cos ^4 \alpha = \frac{6}{8} \, $
(2). $ \sin ^6 \alpha + \cos ^6 \alpha = \frac{12}{16} \, $
(3). $ \cos ^4 \alpha = \frac{1}{2} -\frac{1}{4}\sqrt{3} \, $
(4). $ \sin ^4 \alpha = \frac{7}{16} - \frac{1}{4}\sqrt{3} \, $

Cara 2 Pembahasan Limit Simak UI 2018 Matematika IPA kode 412

Soal yang Akan Dibahas
Jika $ \displaystyle \lim_{x \to -3} \frac{\frac{1}{ax}+\frac{1}{3}}{bx^3+27} = -\frac{1}{3^5} $ , maka nilai $ a + b $ untuk $ a $ dan $ b $ bulat positif adalah ....
A). $ -4 \, $ B). $ -2 \, $ C). $ 0 \, $ D). $ 2 \, $ E). $ 4 \, $

$\spadesuit $ Konsep Dasar
*). Untuk menyelesaikan limit, wajib substitusi nilai variabelnya.
*). Limit bentuk tak tentu adalah limit yang hasilnya $ \frac{0}{0} $.
Agar suatu bentuk limit bisa diselesaikan, maka kita anggap hasilnya bentuk tak tentu.

$\clubsuit $ Pembahasan
*). Menyelesaikan limitnya :
$\begin{align} \displaystyle \lim_{x \to -3} \frac{\frac{1}{ax}+\frac{1}{3}}{bx^3+27} & = -\frac{1}{3^5} \\ \frac{\frac{1}{a.(-3)}+\frac{1}{3}}{b.(-3)^3+27} & = -\frac{1}{3^5} \\ \frac{\frac{1}{-3a}+\frac{1}{3}}{-27b+27} & = -\frac{1}{3^5} \\ \frac{\frac{1}{3} \left( 1 - \frac{1}{a} \right) }{-27( b - 1) } & = -\frac{1}{3^5} \end{align} $
*). Agar bisa diselesaikan limitnya, kita anggap bentuknya tak tentu yaitu $ \frac{0}{0} $ , sehingga kita peroleh :
$ \frac{\frac{1}{3} \left( 1 - \frac{1}{a} \right) }{-27( b - 1) } = \frac{0}{0} $
Persamaannya :
$ \frac{1}{3} \left( 1 - \frac{1}{a} \right) = 0 \rightarrow 1 = \frac{1}{a} \rightarrow a = 1 $
$ -27( b - 1) = 0 \rightarrow b = 1 $
Sehingga nilai $ a + b = 1 + 1 = 2 $
Jadi, nilai $ a + b = 2 . \, \heartsuit $