Soal yang Akan Dibahas
$ \int \, \sqrt{x} \left( x^2 - \frac{1}{x^2} \right) dx = .... $
A). $ \frac{2}{7}x^3\sqrt{x} + \frac{2}{\sqrt{x}} + C \, $
B). $ \frac{2}{7}x^3\sqrt{x} + \frac{1}{\sqrt{x}} + C \, $
C). $ \frac{2}{7}x^3\sqrt{x} + \frac{1}{2\sqrt{x}} + C \, $
D). $ \frac{2}{7}x^3\sqrt{x} - \frac{2}{\sqrt{x}} + C \, $
E). $ \frac{2}{7}x^3\sqrt{x} - \frac{1}{2\sqrt{x}} + C $
A). $ \frac{2}{7}x^3\sqrt{x} + \frac{2}{\sqrt{x}} + C \, $
B). $ \frac{2}{7}x^3\sqrt{x} + \frac{1}{\sqrt{x}} + C \, $
C). $ \frac{2}{7}x^3\sqrt{x} + \frac{1}{2\sqrt{x}} + C \, $
D). $ \frac{2}{7}x^3\sqrt{x} - \frac{2}{\sqrt{x}} + C \, $
E). $ \frac{2}{7}x^3\sqrt{x} - \frac{1}{2\sqrt{x}} + C $
$\spadesuit $ Konsep Dasar
*). Rumus integral dasar :
$ \int ax^n dx = \frac{a}{n+1}x^{n+1} + c $
*). Sifat eksponen :
$ a^m.a^n = a^{m+n} $ , $ \sqrt{x} = x^\frac{1}{2} $ dan $ a^{-n} = \frac{1}{a^n} $
*). Rumus integral dasar :
$ \int ax^n dx = \frac{a}{n+1}x^{n+1} + c $
*). Sifat eksponen :
$ a^m.a^n = a^{m+n} $ , $ \sqrt{x} = x^\frac{1}{2} $ dan $ a^{-n} = \frac{1}{a^n} $
$\clubsuit $ Pembahasan
*). Menentukan hasil integralnya :
$\begin{align} \int \, \sqrt{x} \left( x^2 - \frac{1}{x^2} \right) dx & = \int \, x^\frac{1}{2} \left( x^2 - x^{-\frac{1}{2}} \right) dx \\ & = \int \, \left( x^\frac{1}{2} . x^2 - x^\frac{1}{2} . x^{-2} \right) dx \\ & = \int \, \left( x^\frac{5}{2} - x^{- \frac{3}{2}} \right) dx \\ & = \frac{1}{\frac{5}{2} + 1} x^{\frac{5}{2} + 1} - \frac{1}{-\frac{3}{2} + 1} x^{- \frac{3}{2} + 1} + c \\ & = \frac{1}{\frac{7}{2}} x^{\frac{7}{2} } - \frac{1}{-\frac{1}{2} } x^{- \frac{1}{2} } + c \\ & = \frac{2}{7} x^{3 + \frac{1}{2} } + \frac{2}{1} \frac{1}{x^\frac{1}{2}} + c \\ & = \frac{2}{7} x^3 . x^{\frac{1}{2} } + \frac{2}{\sqrt{x}} + c \\ & = \frac{2}{7} x^3 \sqrt{x} + \frac{2}{\sqrt{x}} + c \end{align} $
Jadi, hasil integralnya : $ \frac{2}{7} x^3 \sqrt{x} + \frac{2}{\sqrt{x}} + c . \, \heartsuit $
*). Menentukan hasil integralnya :
$\begin{align} \int \, \sqrt{x} \left( x^2 - \frac{1}{x^2} \right) dx & = \int \, x^\frac{1}{2} \left( x^2 - x^{-\frac{1}{2}} \right) dx \\ & = \int \, \left( x^\frac{1}{2} . x^2 - x^\frac{1}{2} . x^{-2} \right) dx \\ & = \int \, \left( x^\frac{5}{2} - x^{- \frac{3}{2}} \right) dx \\ & = \frac{1}{\frac{5}{2} + 1} x^{\frac{5}{2} + 1} - \frac{1}{-\frac{3}{2} + 1} x^{- \frac{3}{2} + 1} + c \\ & = \frac{1}{\frac{7}{2}} x^{\frac{7}{2} } - \frac{1}{-\frac{1}{2} } x^{- \frac{1}{2} } + c \\ & = \frac{2}{7} x^{3 + \frac{1}{2} } + \frac{2}{1} \frac{1}{x^\frac{1}{2}} + c \\ & = \frac{2}{7} x^3 . x^{\frac{1}{2} } + \frac{2}{\sqrt{x}} + c \\ & = \frac{2}{7} x^3 \sqrt{x} + \frac{2}{\sqrt{x}} + c \end{align} $
Jadi, hasil integralnya : $ \frac{2}{7} x^3 \sqrt{x} + \frac{2}{\sqrt{x}} + c . \, \heartsuit $