Soal yang Akan Dibahas
Jika $ \int \limits_{-2}^0 \left( \cos ( -\pi kx) + \frac{6x^2 - 10x + 7}{k+2}
\right) dx = (k-2)(k+7) $ untuk nilai $ k $ bilangan bulat, maka $ k + 5 = .... $
A). $ 10 \, $ B). $ 9 \, $ C). $ 8 \, $ D). $ 7 \, $ E). $ 6 \, $
A). $ 10 \, $ B). $ 9 \, $ C). $ 8 \, $ D). $ 7 \, $ E). $ 6 \, $
$\spadesuit $ Konsep Dasar
*). Rumus integral :
$ \int ax^n \, dx = \frac{a}{n+1}x^{n+1} + c $
$ \int \cos ax \, dx = \frac{1}{a} \sin ax + c $
*). Sifat integral tentu :
$ \int \limits_a^b ( f(x) + g(x)) dx = \int \limits_a^b f(x) dx + \int \limits_a^b g(x) dx $
*). untuk $ k $ bilangan bulat, maka $ \sin ( 2\pi k ) = 0 $
*). Rumus integral :
$ \int ax^n \, dx = \frac{a}{n+1}x^{n+1} + c $
$ \int \cos ax \, dx = \frac{1}{a} \sin ax + c $
*). Sifat integral tentu :
$ \int \limits_a^b ( f(x) + g(x)) dx = \int \limits_a^b f(x) dx + \int \limits_a^b g(x) dx $
*). untuk $ k $ bilangan bulat, maka $ \sin ( 2\pi k ) = 0 $
$\clubsuit $ Pembahasan
*). Menyusun persamaan :
$\begin{align} \int \limits_{-2}^0 \left( \cos ( -\pi kx) + \frac{6x^2 - 10x + 7}{k+2} \right) dx & = (k-2)(k+7) \\ \int \limits_{-2}^0 \cos ( -\pi kx) dx + \int \limits_{-2}^0 \, \frac{6x^2 - 10x + 7}{k+2} dx & = (k-2)(k+7) \\ \int \limits_{-2}^0 \cos ( -\pi kx) dx + \frac{1}{k+2} \int \limits_{-2}^0 \, 6x^2 - 10x + 7 dx & = (k-2)(k+7) \\ \frac{1}{-\pi k} [\sin ( -\pi kx) ]_{-2}^0 + \frac{1}{k+2} [ 2x^3 - 5x^2 + 7x ]_{-2}^0 & = (k-2)(k+7) \\ \frac{1}{-\pi k} [0 - 0 ] + \frac{1}{k+2} [50 ] & = (k-2)(k+7) \\ 0 + \frac{50}{k+2} & = (k-2)(k+7) \\ \frac{50}{k+2} & = (k-2)(k+7) \\ (k+2)(k-2)(k+7) & = 50 \\ \end{align} $
terpenuhi untuk $ k = 3 $
Sehingga nilai $ k + 5 = 3 + 5 = 8 $
Jadi, nilai $ k + 5 = 8. \, \heartsuit $
*). Menyusun persamaan :
$\begin{align} \int \limits_{-2}^0 \left( \cos ( -\pi kx) + \frac{6x^2 - 10x + 7}{k+2} \right) dx & = (k-2)(k+7) \\ \int \limits_{-2}^0 \cos ( -\pi kx) dx + \int \limits_{-2}^0 \, \frac{6x^2 - 10x + 7}{k+2} dx & = (k-2)(k+7) \\ \int \limits_{-2}^0 \cos ( -\pi kx) dx + \frac{1}{k+2} \int \limits_{-2}^0 \, 6x^2 - 10x + 7 dx & = (k-2)(k+7) \\ \frac{1}{-\pi k} [\sin ( -\pi kx) ]_{-2}^0 + \frac{1}{k+2} [ 2x^3 - 5x^2 + 7x ]_{-2}^0 & = (k-2)(k+7) \\ \frac{1}{-\pi k} [0 - 0 ] + \frac{1}{k+2} [50 ] & = (k-2)(k+7) \\ 0 + \frac{50}{k+2} & = (k-2)(k+7) \\ \frac{50}{k+2} & = (k-2)(k+7) \\ (k+2)(k-2)(k+7) & = 50 \\ \end{align} $
terpenuhi untuk $ k = 3 $
Sehingga nilai $ k + 5 = 3 + 5 = 8 $
Jadi, nilai $ k + 5 = 8. \, \heartsuit $