Soal dan Pembahasan UTBK 2019 Matematika Saintek


Nomor 1
Himpunan penyelesaian dari pertidaksamaan $ \left( \log _a x \right)^2 - \log _a x \, - 2 > 0 $ dengan $ 0 < a < 1 $ adalah ....
A). $ x < a^2 \, $ atau $ x > a^{-1} $
B). $ x < a^2 \, $ atau $ x > a^{-2} $
C). $ a^2 < x < a^{-1} $
D). $ a^2 < x < a^{-2} $
E). $ a^{-2} < x < a^2 $
Nomor 2
Jika $ \displaystyle \lim_{x \to 2} \frac{\sqrt[3]{ax+b}}{x+1} = 2 $ , maka nilai $ \displaystyle \lim_{x \to 2} \frac{\sqrt[3]{\frac{ax}{8}+\frac{b}{8}} -2x + 1}{x^2+4x+3} = .... $
A). $ \frac{-2}{15} \, $ B). $ \frac{-1}{15} \, $ C). $ 0 \, $ D). $ \frac{1}{15} \, $ E). $ \frac{2}{15} $
Nomor 3
Ratna menabung di bank A dalam $ x $ tahun dan uangnya menjadi sebesar $ M $, Wati juga menabung di bank A dalam $ x $ tahun dan uangnya menjadi 3 kali uangnya Ratna. Jika tabungan awal Wati sebesar Rp 2.700.000 dan bank A menerapkan sistem bunga majemuk, maka tabungan awal Ratna sebesar Rp ...
A). $ 8.100.000 \, $ B). $ 5.000.000 \, $ C). $ 2.400.000 \, $
D). $ 2.700.000 \, $ E). $ 900.000 $
Nomor 4
Diketahui matriks $ B = \left( \begin{matrix} 1 & -4 \\ 5 & -2 \end{matrix} \right) $ dan berlaku persamaan $ A^2 + B = \left( \begin{matrix} 3 & -2 \\ 4 & -1 \end{matrix} \right) $. Determinan matriks $ A^4 $ adalah ....
A). $ 1 \, $ B). $ 2 \, $ C). $ 4 \, $ D). $ 16 \, $ E). $ 81 \, $
Nomor 5
Diketahui sistem persamaan :
$ \left\{ \begin{array}{c} \sin ( x+y) = 1 + \frac{1}{5} \cos y \\ \sin (x - y) = -1 + \cos y \end{array} \right. $
dengan $ 0 < y < \frac{\pi}{2} $. Nilai $ \sin x = .... $
A). $ \frac{2}{5} \, $ B). $ \frac{3}{5} \, $ C). $ \frac{4}{5} \, $ D). $ \frac{5}{5} \, $ E). $ \frac{5}{6} \, $
Nomor 6
Fungsi $ f(x) $ memenuhi $ f(x) = f(-x) $. Jika nilai $ \int \limits_{-3}^3 f(x) dx = 6 $ dan $ \int \limits_{2}^3 f(x) dx = 1 $ , maka nilai $ \int \limits_{0}^2 f(x) dx = ... $
A). $ 1 \, $ B). $ 2 \, $ C). $ 3 \, $ D). $ 4 \, $ E). $ 6 $
Nomor 7
Diketahui sistem persamaan :
$ \left\{ \begin{array}{c} y = -mx + c \\ y = (x+4)^2 \end{array} \right. $
Jika sistem persamaan tersebut memiliki tepat satu penyelesaian, maka jumlah semua nilai $ m $ adalah ....
A). $ -32 \, $ B). $ -20 \, $ C). $ -16 \, $ D). $ -8 \, $ E). $ -4 $
Nomor 8
Dalam sebuah kantong terdapat $ m $ bola putih dan $ n $ bola merah dengan $ m.n = 120 $ dan $ m < n $. Jika diambil dua bola sekaligus, peluang terambilnya paling sedikit satu bola putih adalah $ \frac{5}{7}$, maka nilai $ m + n = .... $
A). $ 34 \, $ B). $ 26 \, $ C). $ 23 \, $ D). $ 22 \, $ E). $ 21 $
Nomor 9
Penyelesaian dari pertidaksamaan $ |2x+1| < 2 + |x+1| $ adalah berbentuk interval $ (a,b) $. Nilai $ a + b + 2 = .... $
A). $ -3 \, $ B). $ -2 \, $ C). $ 0 \, $ D). $ 2 \, $ E). $ 3 $
Nomor 10
Diketahui barisan aritmetika dengan $ U_n $ menyatakan suku ke-$n$. Jika $ U_{k+2} = U_2 + kU_{16} - 2 $ , maka nilai $ U_6 + U_{12} + U_{18} + U_{24} = .... $
A). $ \frac{2}{k} \, $ B). $ \frac{3}{k} \, $ C). $ \frac{4}{k} \, $ D). $ \frac{6}{k} \, $ E). $ \frac{8}{k} $
Nomor 11
Garis $ y = 2x + 1 $ tidak memotong ataupun tidak menyinggung hiperbola $ \frac{(x-2)^2}{2}-\frac{(y-a)^2}{4}=1 $, interval nilai $ a $ yang memenuhi adalah ....
A). $ a < 3 \, $ atau $ a > 7 $ B). $ -3 < a < 7 \, $ C). $ 3 < a < 7 \, $
D). $ a < -3 \, $ atau $ a > 7 \, $ E). $ -7 < a < -3 $

Catatan : Pembahasan soal-soal ini akan kita lengkapkan secara bertahap.

1 komentar:

  1. terimakasih kak! semua soal dan pembahasan dalam blog ini sangat membantu!

    BalasHapus