Pembahasan Komposisi Fungsi Simak UI 2018 Matematika Dasar kode 632

Soal yang Akan Dibahas
Gunakan petunjuk C.
Diketahui fungsi $ f(x) $ adalah fungsi linear dan $ g(x) = \frac{2x+1}{x} + 1 $ . Jika $ (g \circ f)(x) = 3 + \frac{1}{2x+1} $ , pernyataan yang benar adalah ...
(1). $ a - b = 1 $
(2). $ a - b = 2 $
(3). $ a + b = 3 $
(4). $ a + b = 4 $

$\spadesuit $ Konsep Dasar
*). Komposisi fungsi :
$ (g \circ f)(x) = g(f(x)) $
(Fungsi kanan masuk ke fungsi kiri)

$\clubsuit $ Pembahasan
*). Diketahuui : $ g(x) = \frac{2x+1}{x} + 1 $
Sehingga $ g(f(x)) = \frac{2f(x)+1}{f(x)} + 1 $
*). Menentukan fungsi $ f(x) $ :
$\begin{align} (g \circ f)(x) & = 3 + \frac{1}{2x+1} \\ g(f(x)) & = 3 + \frac{1}{2x+1} \\ \frac{2f(x)+1}{f(x)} + 1 & = 3 + \frac{1}{2x+1} \\ \frac{2f(x)+1}{f(x)} & = 2 + \frac{1}{2x+1} \\ \frac{2f(x)+1}{f(x)} & = \frac{4x + 3}{2x+1} \\ f(x) [ 4x + 3] & = (2f(x) + 1)(2x + 1) \\ f(x) [ 4x + 3] & = 2f(x) (2x + 1) + (2x + 1) \\ f(x) [ 4x + 3] - 2f(x) (2x + 1) & = (2x + 1) \\ f(x) [ 4x + 3] - f(x) (4x + 2) & = (2x + 1) \\ f(x) [ (4x + 3) - (4x + 2) ] & = (2x + 1) \\ f(x) [1 ] & = (2x + 1) \\ f(x) & = 2x + 1 \end{align} $
Kita peroleh $ f(x) = 2a + 1 $
Bentuk $ f(x) = 2x + 1 $ sama dengan $ f(x) = ax + b $ sehingga $ a = 2 $ dan $ b = 1 $
*). Menentukan nilai sesuai pernyataan yang ada :
$\begin{align} a - b & = 2 - 1 = 1 \\ a + b & = 2 + 1 = 3 \end{align} $
Sehingga pernyataan (1) dan (3) yang BENAR, jawabannya B
Jadi, yang BENAR pernyataan (1) dan (3) $ . \, \heartsuit $

Pembahasan Invers Fungsi Simak UI 2018 Matematika Dasar kode 632

Soal yang Akan Dibahas
Jika $ f(x) = ax + b $ dan $ f^{-1} (x) = bx + a $ dengan $ a, b \in R $, maka $ (a+b)^2 = ... $
A). $ 0 \, $ B). $ 1 \, $ C). $ 2 \, $ D). $ 4 \, $ E). $ 9 $

$\spadesuit $ Konsep Dasar
*). Definisi fungsi invers :
$ y = f(x) \Leftrightarrow x = f^{-1} (y) $

$\clubsuit $ Pembahasan
*). Diketahuui : $ f(x) = ax + b $ dan $ f^{-1} (x) = bx + a $
*). Menentukan invers fungsi $ f(x) = ax + b $ :
$\begin{align} f(x) & = ax + b \\ y & = ax + b \\ ax & = y - b \\ x & = \frac{y - b}{a} \\ x & = \frac{1}{a}y - \frac{b}{a} \\ f^{-1} & = \frac{1}{a}x - \frac{b}{a} \end{align} $
*). Kita peroleh $ f^{-1} = \frac{1}{a}x - \frac{b}{a} $ dan diketahui $ f^{-1} (x) = bx + a $, sehingga berlaku kesamaan :
$\begin{align} \frac{1}{a}x - \frac{b}{a} & = bx + a \end{align} $
yang aritnya :
$ \frac{1}{a} = b \rightarrow ab = 1 \, $ ....(i)
$ - \frac{b}{a} = a \rightarrow b = -a^2 \, $ .....(ii)
*). Substitusi pers(ii) ke pers(i) :
$\begin{align} ab & = 1 \\ a. -a^2 & = 1 \\ -a^3 & = 1 \\ a^3 & = -1 \\ a & = -1 \end{align} $
Pers(ii): $ b = -a^2 = -(-1)^2 = -1 $
*). Menentukan nilai $ (a+b)^2 $ :
$\begin{align} (a+b)^2 & = [(-1) + (-1)]^2 = (-2)^2 = 4 \end{align} $
Jadi, nilai $ (a+b)^2 = 4 . \, \heartsuit $

Pembahasan Bidang Datar Simak UI 2018 Matematika Dasar kode 632

Soal yang Akan Dibahas
Diberikan sebuah segitiga siku-siku ABC yang siku-siku di B dengan $ AB = 6 $ dan $ BC = 8 $. Titik M, N berturut-turut berada pada sisi AC sehingga $ AM : MN : NC = 1 : 2 : 3 $. Titik P dan Q secara berurutan berada pada sisi AB dan BC sehingga AP tegak lurus PM dan BQ tegak lurus QN. Luas segilima PMNQB adalah ...
A). $ 21\frac{1}{3} \, $ B). $ 20\frac{1}{3} \, $ C). $ 19\frac{1}{3} \, $ D). $ 18\frac{1}{3} \, $ E). $ 17\frac{1}{3} $

$\spadesuit $ Konsep Dasar
*). Luas segitiga = $ \frac{1}{2} \times $ alas $ \times $ tinggi
*). Konsep kesebangunan :
-). Misalkan $\Delta PQR $ sebangun dengan $ \Delta MNO $, dan perbandingan salah satu sisi yang bersesuaian $ a : b $ , maka perbandingan luasnya yaitu : $ \text{Luas PQR} : \text{Luas MNO} = a^2 : b^2 $.
-). Dua segitiga dikatakan sebangun jika ketiga sudut yang bersesuaian besarnya sama.

$\clubsuit $ Pembahasan
*). Ilustrasi gambarnya :
 

Luas ABC $ = \frac{1}{2} \times 6 \times 8 = 24 $
*). Dari gambar kita peroleh :
-) segitiga APM sebangun dengan segitiga ABC
-) segitiga CNQ sebangun dengan segitiga ABC
-). $ AM : AC = 1 : 6 $ dan $ NC : AC = 3 : 6 = 1 : 2 $
*). Menentukan luas segitiga APM :
$\begin{align} \frac{\text{Luas APM}}{\text{Luas ABC}} & = \frac{AM^2}{AC^2} \\ \frac{\text{Luas APM}}{24} & = \frac{1^2}{6^2} \\ \frac{\text{Luas APM}}{24} & = \frac{1}{36} \\ \text{Luas APM} & = \frac{1}{36} \times 24 = \frac{2}{3} \end{align} $
*). Menentukan luas segitiga CNQ :
$\begin{align} \frac{\text{Luas CNQ}}{\text{Luas ABC}} & = \frac{NC^2}{AC^2} \\ \frac{\text{Luas CNQ}}{24} & = \frac{1^2}{2^2} \\ \frac{\text{Luas CNQ}}{24} & = \frac{1}{4} \\ \text{Luas CNQ} & = \frac{1}{4} \times 24 = 6 \end{align} $
*). Menentukan luas PMNQB :
$\begin{align} \text{Luas PMNQB } & = \text{L ABC } - (\text{L APM} + \text{L CNQ}) \\ & = 24 - ( \frac{2}{3} + 6) = 17\frac{1}{3} \end{align} $
Jadi, Luas PMNQB adalah $ 17\frac{1}{3} . \, \heartsuit $

Pembahasan Penyusunan Simak UI 2018 Matematika Dasar kode 632

Soal yang Akan Dibahas
Diberikan himpunan huruf {a,i,u,e,o,k,l,m,n,r,p,q}. Banyak cara menyusun huruf-huruf tersebut sehingga tidak ada vokal yang berdampingan adalah ...
A). $ \frac{5!.7!}{2!} \, $ B). $ \frac{5!.7!}{3!} \, $ C). $ \frac{6!.8!}{3!} \, $
D). $ \frac{7!.8!}{3!} \, $ E). $ \frac{7!.8!}{2!} $

$\spadesuit $ Konsep Dasar
*). Aturan Penyusunan :
-). Jika ada $ n $ benda disusun berbaris kesamping di $ n $ tempat, maka ada $ n! $ cara.
-). Banyak cara penyusunan yang memperhatikan urutan menggunakan permutasi. Banyak cara penyusunan $ r $ benda pada $ n $ tempat dengan $ r \leq n $ adalah $ P_r^n $ dengan perhitungan $ P_r^n = \frac{n!}{(n-r)!} $
-). Faktorial : $ n! = n.(n-1).(n-2)....3.2.1 $
Contoh : $ 3! = 3.2.1 = 6 $ dan $ 5! = 5.4.3.2.1 = 120 $

$\clubsuit $ Pembahasan
*). Diketahui himpunan huruf {a,i,u,e,o,k,l,m,n,r,p,q}.
*). Agar tidak ada vokal yang berdampingan, berikut salah satu cara penyusunannya yaitu kita letakkan hurufnya pada kotak-kota yang tersedia seperti pada gambar berikut.
 

*). Cara penyusunannya :
-). Pertama kita letakkan huruf konsonan pada kotak berwarna abu-abu. Ada 7 huruf konsonan yang kita susun pada 7 tempat, sehingga banyak cara penyusunan huruf konsonannya yaitu $ 7!$
-). kedua kita susun atau letakkan huruf vokal pada kotak berwarna putih dimana pasti dijamin huruf vokal akan dipisahkan oleh huruf konsonan (vokal tidak berdampingan). Ada 5 huruf vokal yang akan kita letakkan pada 8 kotak (kotak warna putih), sehingga banyak cara penyusunan huruf vokal yaitu $ P_5^8 = \frac{8!}{(8-5)!} = \frac{8!}{3!} $
*). TOtal cara penyusunan yaitu :
$\begin{align} \text{total cara } & = 7! \times \frac{8!}{3!} = \frac{7! . 8!}{3!} \end{align} $
Jadi, toal caranya adalah $ \frac{7! . 8!}{3!} . \, \heartsuit $