Cara 2 Pembahasan Pertidaksamaan SM Unram 2018 Matematika Dasar

Soal yang Akan Dibahas
Penyelesaian pertidaksamaan $ \frac{8x^2-3x+10}{2-5x} \leq 1 - 2x $ adalah ...
A). $ -1 \leq x \leq 4 $
B). $ 1 \leq x \leq \frac{2}{5} \, $ atau $ x \geq 4 $
C). $ -1 < x \leq \frac{2}{5} \, $ atau $ x \geq 4 $
D). $ \frac{2}{5} \leq x \leq 4 \, $ atau $ x \leq -1 $
E). $ \frac{2}{5} < x \leq 4 \, $ atau $ x \leq -1 $

$\spadesuit $ Konsep Dasar
*). Untuk menyelesaikan soal pertidaksamaan yang ada opsinya (pilihan gandanya), kita bisa langsung substitusi angka-angka dari opsionnya yang kita sebut metode SUKA.

$\clubsuit \, $ Cara II : Metode Suka (substitusi angka)
Metode Suka maksudnya kita memilih angka atau nilai $x$ dari pilihan, lalu disubstitusikan ke pertidaksamaannya. Metode ini hanya membutuhkan ketelitian berhitung.
$\begin{align} \text{Pilih} \, x=\frac{2}{5} \Rightarrow \frac{8x^2-3x+10}{2-5x} & \leq 1 - 2x \\ \frac{8.(\frac{2}{5})^2-3.(\frac{2}{5})+10}{2-5.(\frac{2}{5})} & \leq 1 - 2.(\frac{2}{5}) \\ \frac{\frac{32}{25}-\frac{6}{5}+10}{0} & \leq 1 - \frac{4}{5} \, \, \text{(SALAH)} \end{align}$
yang ada $x=\frac{2}{5}$ SALAH karena penyebut $ \neq 0 $, opsi yang benar E.
Sehingga opsi yang benar adalah opsi E (yang tersisa).
Jadi, solusinya adalah $ \frac{2}{5} < x \leq 4 \, $ atau $ x \leq -1 . \, \heartsuit $

Pembahasan Pertidaksamaan SM Unram 2018 Matematika Dasar

Soal yang Akan Dibahas
Penyelesaian pertidaksamaan $ \frac{8x^2-3x+10}{2-5x} \leq 1 - 2x $ adalah ...
A). $ -1 \leq x \leq 4 $
B). $ 1 \leq x \leq \frac{2}{5} \, $ atau $ x \geq 4 $
C). $ -1 < x \leq \frac{2}{5} \, $ atau $ x \geq 4 $
D). $ \frac{2}{5} \leq x \leq 4 \, $ atau $ x \leq -1 $
E). $ \frac{2}{5} < x \leq 4 \, $ atau $ x \leq -1 $

$\spadesuit $ Konsep Dasar :
*). Langkah-langkah menyelesaikan pertidaksamaan
1). Nolkan salah satu ruas (biasanya ruas kanan),
2). tentukan akar-akar (pembuat nolnya),
3). Buat garis bilangan dan tentukan tandanya serta arsir daerahnya,
Jika tanda $ > 0 $ , maka arsir daerah positif,
Jika tanda $ < 0 $ , maka arsir daerah negatif,
4). Buat himpunan penyelesaiannya.
*). Untuk pertidaksamaan pecahan, tidak dikalikan silang karena akan menghilangkan akar-akar penyebutnya.
*). syarat bentuk pecahan : akar penyebut selalu tidak ikut.
$ \frac{f(x)}{g(x)} \rightarrow g(x) \neq 0 $

$\clubsuit $ Pembahasan
*). Menentukan akar-akarnya :
$\begin{align} \frac{8x^2-3x+10}{2-5x} & \leq 1 - 2x \\ \frac{8x^2-3x+10}{2-5x} + (2x - 1) & \leq 0 \\ \frac{8x^2-3x+10}{2-5x} + \frac{(2x - 1)(2-5x)}{2-5x} & \leq 0 \\ \frac{8x^2-3x+10}{2-5x} + \frac{-10x^2 + 9x - 2}{2-5x} & \leq 0 \\ \frac{-2x^2+6x+8}{2-5x} & \leq 0 \\ \frac{-2(x^2-3x - 4)}{2-5x} & \leq 0 \\ \frac{-2(x+1)(x-4)}{2-5x} & \leq 0 \end{align} $
-). Akar-akarnya yaitu :
Pembilang : $ -2(x+1)(x-4) = 0 \rightarrow x = -1 \vee x = 4 $
Penyebut : $ 2 - 5x = 0 \rightarrow x = \frac{2}{5} $
(akar penyebut tidak boleh ikut).
Garis bilangannya :
 

-). Dari garis bilangan tersebut, penyelesaiannya adalah daerah yang negatif yaitu :
$ \frac{2}{5} < x \leq 4 \, $ atau $ x \leq -1 $
Jadi, solusinya $ \frac{2}{5} < x \leq 4 \, $ atau $ x \leq -1 . \, \heartsuit $

Pembahasan Trigonometri Dasar SM Unram 2018 Matematika Dasar

Soal yang Akan Dibahas
Diberikan segitiga ABC siku-siku di C. Jika $ \cos (A-C) = k $ , maka $ \sin A + \cos B = ... $
A). $ -\frac{k}{2} \, $ B). $ -k \, $ C). $ -2k \, $ D). $ \frac{1}{2}k \, $ E). $ 2k $

$\spadesuit $ Konsep Dasar :
*). Hubungan kuadran pada trigonometri:
$ \cos (x - y) = \cos ( y - x) $
$ \cos ( 90^\circ - x) = \sin x $

$\clubsuit $ Pembahasan
*). Modifikasi bentuk $ \cos (A-C) = k $ dengan $ C = 90^\circ $ :
$\begin{align} \cos (A-C) & = k \\ \cos (C - A) & = k \\ \cos (90^\circ - A) & = k \\ \sin A & = k \end{align} $
*). Menentukan nilai $ \cos B $ :
$\begin{align} A + B + C & = 180^\circ \\ A + B + 90^\circ & = 180^\circ \\ A + B & = 90^\circ \\ B & = 90^\circ - A \\ \cos B & = \cos ( 90^\circ - A ) \\ \cos B & = k \end{align} $
*). Menentukan $ \sin A + \cos B $ :
$\begin{align} \sin A + \cos B & = k + k = 2k \end{align} $
Jadi, nilai $ \sin A + \cos B = 2k . \, \heartsuit $

Pembahasan Segitiga SM Unram 2018 Matematika Dasar

Soal yang Akan Dibahas
Perbandingan kaki-kaki segitiga siku-siku ABC adalah $ 2 : 3 $. Jika luas segitiga tersebut adalah 75, maka berapa panjang sisi miringnya?
A). $ 4 \, $ B). $ 4\sqrt{5} \, $ C). $ 13\sqrt{5} \, $ D). $ 5\sqrt{3} \, $ E). $ 5\sqrt{13} $

$\spadesuit $ Konsep Dasar :
*). Luas segitiga = $ \frac{1}{2} \times \, $ alas $ \, \times \, $ tinggi.
*). Pada suatu bentuk perbandingan bisa kita kalikan dengan aljabar yang sama.

$\clubsuit $ Pembahasan
*). Diketahui perbandingan kaki-kaki segitiga siku-siku adalah $ 2 : 3 $. Kaki-kaki sigitiga siku-siku sebagai alas dan tinggi segitiga tersebut, sehingga kita peroleh $ a : t = 2 : 3 $ yang bisa kita modifikasi dengan mengalikan aljabar yaitu :
$ a : t = 2x + 3x $ yang aritnya $ a = 2x $ dan $ t = 3x $.
*). Ilustrasi gambarnya :
 

*). Menentukan nilai $ x $ :
$\begin{align} \text{Luas segitiga } & = 75 \\ \frac{1}{2}.a.t & = 75 \\ \frac{1}{2}.2x.3x & = 75 \\ 3x^2 & = 75 \\ x^2 & = 25 \\ x & = 5 \end{align} $
Sehingga ukuran segitiganya :
alas $ = 2x = 2.5 = 10 $
tinggi $ = 3x = 3.5 = 15 $
*). Menentukan sisi miringnya :
$\begin{align} \text{miring } & = \sqrt{10^2 + 15^2} \\ & = \sqrt{100 + 225} \\ & = \sqrt{325} \\ & = \sqrt{25 \times 13} \\ & = 5\sqrt{13} \end{align} $
Jadi, sisi miringnya adalah $ 5\sqrt{13} . \, \heartsuit $

Pembahasan Bidang Datar SM Unram 2018 Matematika Dasar

Soal yang Akan Dibahas
Jika luas persegi besar 49 cm$^2$, maka keliling lingkarannya adalah ... cm

A). $ 5 \pi \, $ B). $ 7 \pi \, $ C). $ 10 \pi \, $ D). $ 18 \pi \, $ E). $ 20 \pi $

$\spadesuit $ Konsep Dasar :
*). Luas persegi $ = s^2 $
*). Keliling lingkaran $ = 2\pi r $

$\clubsuit $ Pembahasan
*). Ilustrasi gambar :
 

Dari gambar, panjang jari-jari lingkaran yaitu :
$ r = \frac{s}{2} $
dengan $ s = \, $ panjang sisi persegi besar.
*). Menentukan panjang $ r $ :
$\begin{align} \text{Luas persegi } & = 49 \\ s^2 & = 49 \\ s & = 7 \\ r & = \frac{s}{2} = \frac{7}{2} \end{align} $
*). Menentukan keliling lingkaran dengan $ r = \frac{7}{2} $ :
$\begin{align} \text{Keliling } & = 2 \pi r \\ & = 2 \pi . \frac{7}{2} \\ & = 7\pi \end{align} $
Jadi, keliling lingkaran adalah $ 7\pi . \, \heartsuit $

Pembahasan Fungsi Komposisi SM Unram 2018 Matematika Dasar

Soal yang Akan Dibahas
Jika $ f : R \to R $ dengan $ f(x) = 2x - 2 $ dan $ g : R \to R $ dengan $ g(x) = x^2 - 1 $, maka $ f \circ g (x+1) = ... $
A). $ 2x^2 - 4 \, $ B). $ 2x^2 + 4x - 2 \, $ C). $ 2x^2 - 4x + 1 \, $
D). $ 2x^2 - 2 \, $ E). $ 2x^2 - 5 $

$\spadesuit $ Konsep Dasar :
*). Aturan fungsi komposisi :
$ (f \circ g)(x) = f(g(x)) $
(fungsi kanan masuk ke fungsi kirinya).

$\clubsuit $ Pembahasan
*). Diketahui $ f(x) = 2x - 2 $ dan $ g(x) = x^2 - 1 $ :
*). Menentukan bentuk $ (f \circ g)(x) $ :
$\begin{align} (f \circ g)(x) & = f(g(x)) \\ & = f(x^2 -1 ) \\ & = 2(x^2 -1) - 2 \\ & = 2x^2 - 4 \end{align} $
*). Menentukan bentuk $ (f \circ g)(x+1) $ :
$\begin{align} (f \circ g)(x) & = 2x^2 - 4 \\ (f \circ g)(x+1) & = 2(x+1)^2 - 4 \\ & = 2(x^2 + 2x + 1) - 4 \\ & = 2x^2 + 4x + 2 - 4 \\ & = 2x^2 + 4x - 2 \end{align} $
Jadi, bentuk $ (f \circ g)(x+1) = 2x^2 + 4x - 2 . \, \heartsuit $

Pembahasan Peluang SM Unram 2018 Matematika Dasar

Soal yang Akan Dibahas
Dari 12 orang pengurus OSIS akan dipilih seorang ketua, sekretaris, dan bendahara. Banyak susunan pengurus yang dapat terjadi adalah ...
A). $ 1728 \, $ B). $ 1320 \, $ C). $ 120 \, $ D). $ 132 \, $ E). $ 220 $

$\spadesuit $ Konsep Dasar :
*). Aturan Permutasi : $ P_r^n = \frac{n!}{(n-r)!} $
dengan $ n! = n.(n-1).(n-2)....3.2.1 $
Contoh :
$ 4! = 4.3.2.1 = 24 $
$ 5! = 5.4.3.2.1 = 120 $
*). Aturan permutasi digunakan untuk penyusunan yang memperhatikan urutan (URUTAN berpengaruh) misalkan kasus penyusunan jabatan.

$\clubsuit $ Pembahasan
*). Ada 12 orang akan dipilih tiga orang untuk mengisi jabatan ketua, sekretaris, dan bendahara. Karena penyusunan jabatan, maka perhitungannya menggunakan aturan permutasi yaitu memilih 3 orang ($ r = 3 $) dari 12 orang yang tersedia ($n=12$).
*). Banyak susunan yang mungkin :
$\begin{align} \text{Banyak susunan } & = P_3^{12} \\ & = \frac{12!}{(12-3)!} \\ & = \frac{12.11.10.9!}{9!} \\ & = 12.11.10 \\ & = 1320 \end{align} $
Jadi, banyak susunan pengurus ada $ 1320 . \, \heartsuit $

Pembahasan Persamaan Garis SM Unram 2018 Matematika Dasar

Soal yang Akan Dibahas
Dua garis dalam persamaan matriks
$ \left( \begin{matrix} -2 & a \\ b & 6 \end{matrix} \right) \left( \begin{matrix} x \\ y \end{matrix} \right) = \left( \begin{matrix} 5 \\ 7 \end{matrix} \right) $
saling tegak lurus jika $ a : b = ... $
A). $ -6 : 1 \, $ B). $ 2 : 3 \, $ C). $ -3 : 2 \, $
D). $ 1 : 2 \, $ E). $ 1 : 3 $

$\spadesuit $ Konsep Dasar :
*). Perkalian matriks = baris kali kolom
*). Gradien garis : $ ax + by = c \rightarrow m = \frac{-a}{b} $
*). Dua garis tegak lurus berlaku : $ m_1.m_2 = -1 $

$\clubsuit $ Pembahasan
*). Menyusun persamaan garisnya :
$\begin{align} \left( \begin{matrix} -2 & a \\ b & 6 \end{matrix} \right) \left( \begin{matrix} x \\ y \end{matrix} \right) & = \left( \begin{matrix} 5 \\ 7 \end{matrix} \right) \\ \left( \begin{matrix} -2x + ay \\ bx + 6y \end{matrix} \right) & = \left( \begin{matrix} 5 \\ 7 \end{matrix} \right) \end{align} $
Sehingga terbentuk dua garis yaitu :
$ -2x + ay = 5 \rightarrow m_1 = \frac{-(-2)}{a} = \frac{2}{a} $
$ bx + 6y = 7 \rightarrow m_2 = \frac{-b}{6} $
*). Kedua garis tegak lurus :
$\begin{align} m_1. m_2 & = -1 \\ \frac{2}{a}.\frac{-b}{6} & = -1 \\ \frac{-b}{3a} & = -1 \\ \frac{b}{a} & = 3 \\ \frac{a}{b} & = \frac{1}{3} \end{align} $
Jadi, nilai $ a : b = 1 : 3 . \, \heartsuit $

Pembahasan Invers Fungsi SM Unram 2018 Matematika Dasar

Soal yang Akan Dibahas
Nilai $ x $ yang memenuhi persamaan $ 3 + f^{-1} (x-1) = 4 $ dengan $ f(1) = 2 $ pada domain $ f $ dan $ f^{-1} $ : $ (-\infty , \infty ) $ adalah ...
A). $ -2 \, $ B). $ 1 $ C). $ 0 \, $ D). $ -1 \, $ E). $ 2 $

$\spadesuit $ Konsep Dasar :
*). Definisi invers fungsi :
$ y = f(x) \leftrightarrow f^{-1} (y) = x $
Definisi ini berlaku dua arah yaitu :
$ y = f(x) \rightarrow f^{-1} (y) = x $ dan $ f^{-1} (y) = x \rightarrow y = f(x) $
Contoh :
$ f(x+1) = 3x \rightarrow f^{-1} (3x) = x+1 $
$ f^{-1} (2x - 3) = x + 8 \rightarrow f(x+8) = 2x - 3 $
*). Konsep kesamaan nilai fungsi :
Jika $ f(a) = b $ dan $ f(a) = c $ , maka $ b = c $.

$\clubsuit $ Pembahasan
*). Diketahui $ 3 + f^{-1} (x-1) = 4 $ dengan $ f(1) = 2 $
*). Mengubah bentuknya :
$\begin{align} 3 + f^{-1} (x-1) & = 4 \\ f^{-1} (x-1) & = 4 - 3 \\ f^{-1} (x-1) & = 1 \\ x - 1 & = f(1) \end{align} $
Sehingga kita memiliki $ f(1) = 2 $ dan $ f(1) = x - 1 $,
artinya $ x - 1 = 2 \rightarrow x = 3 $.
Jadi, nilai $ x = 3 . \, \heartsuit $
(tidak ada jawabannya).

Pembahasan Teknik Integral SM Unram 2018 Matematika Dasar

Soal yang Akan Dibahas
$ \int 3\sqrt{x^7 + x^4} \, dx = ... $
A). $ \frac{1}{3} \sqrt{x^3 + 1} + C \, $
B). $ \frac{2}{3} \sqrt{x^3 + 1} + C \, $
C). $ \frac{1}{3} (x^3 + 1) \sqrt{x^3 + 1} + C \, $
D). $ (x^3 + 1) \sqrt{x^3 + 1} + C \, $
E). $ \frac{2}{3} (x^3 + 1) \sqrt{x^3 + 1} + C \, $

$\spadesuit $ Konsep Dasar :
*). Integral teknik substitusi :
misalkan $ f(x) = u $, maka $ \frac{du}{dx} = f^\prime (x) \rightarrow dx = \frac{du}{f^\prime (x)} $
bentuk integralnya : $ \int g(x) . [f(x)]^n \, dx = \int g(x) . u^n \, \frac{du}{f^\prime (x)} $
*). Rumus integral dasar :
$ \int \, ax^n \, dx = \frac{a}{n+1}x^{n+1} + c $
*). Sifat bentuk akar :
$ \sqrt{a.b} = \sqrt{a}. \sqrt{b} $
$ \sqrt{a} = a^\frac{1}{2} $
$ a^{m+n} = a^m . a^n $

$\clubsuit $ Pembahasan
*). Misalkan $ u = x^3 + 1 $ , maka turunannya :
$\begin{align} u = x^3 + 1 \rightarrow \frac{du}{dx} & = 3x^2 \\ dx & = \frac{du}{3x^2} \end{align} $
*). Mengubah bentuk fungsinya :
$\begin{align} \int 3\sqrt{x^7 + x^4} \, dx & = \int 3\sqrt{x^4(x^3 + 1)} \, dx \\ & = \int 3\sqrt{x^4 }. \sqrt{ x^3 + 1 } \, dx \\ & = \int 3x^2 \sqrt{ x^3 + 1 } \, dx \end{align} $
*). Menentukan hasil integralnya dengan substitusi persmisalannya :
$\begin{align} \int 3\sqrt{x^7 + x^4} \, dx & = \int 3x^2 \sqrt{ x^3 + 1 } \, dx \\ & = \int 3x^2 \sqrt{u} \, \frac{du}{3x^2} \\ & = \int \sqrt{u} \, du \\ & = \int u^\frac{1}{2} \, du \\ & = \frac{1}{\frac{1}{2} + 1} u^{\frac{1}{2} + 1} + c \\ & = \frac{1}{\frac{3}{2}} u^1.u^ \frac{1}{2} + c \\ & = \frac{2}{3} u \sqrt{u} + c \\ & = \frac{2}{3} ( x^3 + 1 ) \sqrt{ x^3 + 1 } + c \end{align} $
Jadi, hasilnya $ \int 3\sqrt{x^7 + x^4} \, dx = \frac{2}{3} ( x^3 + 1 ) \sqrt{ x^3 + 1 } + c . \, \heartsuit $