Nomor 16
Jika $ A = \left( \begin{matrix} 2 & 1 \\ -1 & 0 \end{matrix} \right) , \, B = \left( \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix} \right) \, $
dan $ I \, $ matriks identitas, maka $ AB^{-1} + BA^{-1} = .... $
$\spadesuit \, $ Konsep Matriks
invers : $ A = \left( \begin{matrix} a & b \\ c & d \end{matrix} \right) \rightarrow A^{-1} = \frac{1}{a.d-b.c} \left( \begin{matrix} d & -b \\ -c & a \end{matrix} \right) $
$\spadesuit \, $ Menentukan invers dan hasil $ AB^{-1} + BA^{-1} $
$\begin{align} A & = \left( \begin{matrix} 2 & 1 \\ -1 & 0 \end{matrix} \right) \rightarrow A^{-1} = \frac{1}{0.2 - (-1).1} \left( \begin{matrix} 0 & -1 \\ 1 & 2 \end{matrix} \right) \\ A & = \left( \begin{matrix} 0 & -1 \\ 1 & 2 \end{matrix} \right) \\ B & = \left( \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix} \right) \rightarrow B^{-1} = \frac{1}{1.1 - 0.(-1)} \left( \begin{matrix} 1 & -1 \\ 0 & 1 \end{matrix} \right) \\ B & = \left( \begin{matrix} 1 & -1 \\ 0 & 1 \end{matrix} \right) \\ AB^{-1} + BA^{-1} & = \left( \begin{matrix} 2 & 1 \\ -1 & 0 \end{matrix} \right).\left( \begin{matrix} 1 & -1 \\ 0 & 1 \end{matrix} \right) + \left( \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix} \right). \left( \begin{matrix} 0 & -1 \\ 1 & 2 \end{matrix} \right) \\ AB^{-1} + BA^{-1} & = \left( \begin{matrix} 2 & -1 \\ -1 & 1 \end{matrix} \right) + \left( \begin{matrix} 1 & 1 \\ 1 & 2 \end{matrix} \right) \\ AB^{-1} + BA^{-1} & = \left( \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix} \right) = 3 \left( \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right) = 3 I \end{align}$
Jadi, nilai $ AB^{-1} + BA^{-1} = 3I . \heartsuit$
invers : $ A = \left( \begin{matrix} a & b \\ c & d \end{matrix} \right) \rightarrow A^{-1} = \frac{1}{a.d-b.c} \left( \begin{matrix} d & -b \\ -c & a \end{matrix} \right) $
$\spadesuit \, $ Menentukan invers dan hasil $ AB^{-1} + BA^{-1} $
$\begin{align} A & = \left( \begin{matrix} 2 & 1 \\ -1 & 0 \end{matrix} \right) \rightarrow A^{-1} = \frac{1}{0.2 - (-1).1} \left( \begin{matrix} 0 & -1 \\ 1 & 2 \end{matrix} \right) \\ A & = \left( \begin{matrix} 0 & -1 \\ 1 & 2 \end{matrix} \right) \\ B & = \left( \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix} \right) \rightarrow B^{-1} = \frac{1}{1.1 - 0.(-1)} \left( \begin{matrix} 1 & -1 \\ 0 & 1 \end{matrix} \right) \\ B & = \left( \begin{matrix} 1 & -1 \\ 0 & 1 \end{matrix} \right) \\ AB^{-1} + BA^{-1} & = \left( \begin{matrix} 2 & 1 \\ -1 & 0 \end{matrix} \right).\left( \begin{matrix} 1 & -1 \\ 0 & 1 \end{matrix} \right) + \left( \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix} \right). \left( \begin{matrix} 0 & -1 \\ 1 & 2 \end{matrix} \right) \\ AB^{-1} + BA^{-1} & = \left( \begin{matrix} 2 & -1 \\ -1 & 1 \end{matrix} \right) + \left( \begin{matrix} 1 & 1 \\ 1 & 2 \end{matrix} \right) \\ AB^{-1} + BA^{-1} & = \left( \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix} \right) = 3 \left( \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right) = 3 I \end{align}$
Jadi, nilai $ AB^{-1} + BA^{-1} = 3I . \heartsuit$
Nomor 17
Jika $ x \, $ dan $ y \, $ memenuhi sistem persamaan
$\begin{align} \frac{2}{x-1} - \frac{1}{y+2} & = 10 \\ \frac{3}{y+2} + \frac{1}{x-1} & = -9 \end{align} $
maka $ x + y = .... $
$\begin{align} \frac{2}{x-1} - \frac{1}{y+2} & = 10 \\ \frac{3}{y+2} + \frac{1}{x-1} & = -9 \end{align} $
maka $ x + y = .... $
$\clubsuit \,$ Misalkan $ a = \frac{1}{x-1} \, \, $ dan $ \, b = \frac{1}{y+2} $
Sehingga persamaannya menjadi :
$ \frac{2}{x-1} - \frac{1}{y+2} = 10 \rightarrow 2a - b = 10 \, $ ....pers(i)
$ \frac{3}{y+2} + \frac{1}{x-1} = -9 \rightarrow 3b + a = -9 \, $ ....pers(ii)
$\clubsuit \,$ Menentukan nilai $ a \, $ dan $ b $
$\begin{array}{c|c|cc} 2a - b = 10 & \text{kali 1} & 2a - b = 10 & \\ 3b + a = -9 & \text{kali 1} & 6b + 2a = -18 & - \\ \hline & & -7b = 28 & \\ & & b = -4 & \end{array}$
Pers(i) : $ 2a - b = 10 \rightarrow 2a - (-4) = 10 \rightarrow a = 3 $
$\clubsuit \,$ Menentukan nilai $ x \, $ dan $ y $
$\begin{align} a=3 \rightarrow a & = \frac{1}{x-1} \\ 3 & = \frac{1}{x-1} \\ x-1 & = \frac{1}{3} \\ x & = \frac{1}{3} + 1 = \frac{4}{3} \\ b=-4 \rightarrow b & = \frac{1}{y+2} \\ -4 & = \frac{1}{y+2} \\ y+2 & = -\frac{1}{4} \\ y & = - \frac{1}{4} - 2 = -\frac{9}{4} \end{align}$
Sehingga nilai : $ x + y = \frac{4}{3} + (-\frac{9}{4}) = \frac{16 - 27}{12} = -\frac{11}{12} $
Jadi, nilai $ x + y = -\frac{11}{12} . \heartsuit $
Sehingga persamaannya menjadi :
$ \frac{2}{x-1} - \frac{1}{y+2} = 10 \rightarrow 2a - b = 10 \, $ ....pers(i)
$ \frac{3}{y+2} + \frac{1}{x-1} = -9 \rightarrow 3b + a = -9 \, $ ....pers(ii)
$\clubsuit \,$ Menentukan nilai $ a \, $ dan $ b $
$\begin{array}{c|c|cc} 2a - b = 10 & \text{kali 1} & 2a - b = 10 & \\ 3b + a = -9 & \text{kali 1} & 6b + 2a = -18 & - \\ \hline & & -7b = 28 & \\ & & b = -4 & \end{array}$
Pers(i) : $ 2a - b = 10 \rightarrow 2a - (-4) = 10 \rightarrow a = 3 $
$\clubsuit \,$ Menentukan nilai $ x \, $ dan $ y $
$\begin{align} a=3 \rightarrow a & = \frac{1}{x-1} \\ 3 & = \frac{1}{x-1} \\ x-1 & = \frac{1}{3} \\ x & = \frac{1}{3} + 1 = \frac{4}{3} \\ b=-4 \rightarrow b & = \frac{1}{y+2} \\ -4 & = \frac{1}{y+2} \\ y+2 & = -\frac{1}{4} \\ y & = - \frac{1}{4} - 2 = -\frac{9}{4} \end{align}$
Sehingga nilai : $ x + y = \frac{4}{3} + (-\frac{9}{4}) = \frac{16 - 27}{12} = -\frac{11}{12} $
Jadi, nilai $ x + y = -\frac{11}{12} . \heartsuit $
Nomor 18
Jika ($b+c, \, b, \, c $) memenuhi sistem persamaan
$\begin{align} 3x-y+2z & = -1 \\ -2x+y+3z & = -3 \end{align}$
maka $ b+ c = .... $
$\begin{align} 3x-y+2z & = -1 \\ -2x+y+3z & = -3 \end{align}$
maka $ b+ c = .... $
$\spadesuit \, $ Bentuk ($b+c, \, b, \, c $) , artinya $ x = b+c, \, y = b, \, z = c $
$\spadesuit \, $ Substitusi ke sistem persamaan
persamaan pertama :
$\begin{align} 3x-y+2z = -1 \rightarrow 3(b+c)-b+2c & = -1 \\ 2b + 5c & = -1 \, \, \, \text{...peris(i)} \end{align}$
persamaan kedua :
$\begin{align} -2x+y+3z = -3 \rightarrow -2(b+c)+b+3c & = -3 \\ -b + c & = -3 \, \, \, \text{...peris(ii)} \end{align}$
$\spadesuit \, $ Eliminasi pers(i) dan pers(ii)
$\begin{array}{c|c|cc} 2b + 5c = -1 & \text{(kali 1)} & 2b + 5c = -1 & \\ -b + c = -3 & \text{(kali 2)} & -2b + 2c & = -36 & + \\ \hline & & 7c = -7 & \\ & & c = -1 & \end{array}$
Pers(ii) : $ -b + c = -3 \rightarrow -b + c(-1) = -3 \rightarrow b = 2 $
Sehingga nilai $ b + c = 2 + (-1) = 1 $
Jadi, nilai $ b + c = 1 . \heartsuit $
$\spadesuit \, $ Substitusi ke sistem persamaan
persamaan pertama :
$\begin{align} 3x-y+2z = -1 \rightarrow 3(b+c)-b+2c & = -1 \\ 2b + 5c & = -1 \, \, \, \text{...peris(i)} \end{align}$
persamaan kedua :
$\begin{align} -2x+y+3z = -3 \rightarrow -2(b+c)+b+3c & = -3 \\ -b + c & = -3 \, \, \, \text{...peris(ii)} \end{align}$
$\spadesuit \, $ Eliminasi pers(i) dan pers(ii)
$\begin{array}{c|c|cc} 2b + 5c = -1 & \text{(kali 1)} & 2b + 5c = -1 & \\ -b + c = -3 & \text{(kali 2)} & -2b + 2c & = -36 & + \\ \hline & & 7c = -7 & \\ & & c = -1 & \end{array}$
Pers(ii) : $ -b + c = -3 \rightarrow -b + c(-1) = -3 \rightarrow b = 2 $
Sehingga nilai $ b + c = 2 + (-1) = 1 $
Jadi, nilai $ b + c = 1 . \heartsuit $
Nomor 19
Jika $ m > 0 , \, $ maka himpunan semua penyelesaian pertidaksamaan $ \sqrt{m^2 - x^2} \leq x \, $ adalah ....
$\clubsuit \, $ Syarat bentuk akar :
*). Dalam akar positif : $ \sqrt{m^2 - x^2} $
$ m^2 - x^2 \geq 0 \rightarrow (m-x)(m+x) \geq 0 \rightarrow x = m \vee x = -m $
HP1 = $ \{ -m \leq x \leq m \} $
*). Karena $ x \geq \sqrt{m^2 - x^2} \, $ yang mana $ \sqrt{m^2 - x^2} \geq 0 \, $ , maka haruslah nilai $ x \geq 0 \, $ (nilai $ x \, $ juga positif). Sehingga HP2 = $ \{ x \geq 0 \} $
$\clubsuit \, $ Kuadratkan pertidaksamaannya
$\begin{align} \sqrt{m^2 - x^2} & \leq x \\ (\sqrt{m^2 - x^2})^2 & \leq x^2 \\ m^2 - x^2 & \leq x^2 \\ m^2 - 2x^2 & \leq 0 \\ m^2 - 2x^2 & = 0 \rightarrow 2x^2 = m^2 \rightarrow x = \pm \sqrt{\frac{m^2}{2}} = \pm \frac{m}{\sqrt{2}} \end{align}$
HP3 = $ \{ x \leq -\frac{m}{\sqrt{2}} \vee x \geq \frac{m}{\sqrt{2}} \} $
Sehingga solusi totalnya :
HP = $ HP1 \cap HP2 \cap HP3 = \{ \frac{m}{\sqrt{2}} \leq x \leq m \} $
Jadi, penyelesaiannya adalah $ HP = \{ \frac{m}{\sqrt{2}} \leq x \leq m \} . \heartsuit$
*). Dalam akar positif : $ \sqrt{m^2 - x^2} $
$ m^2 - x^2 \geq 0 \rightarrow (m-x)(m+x) \geq 0 \rightarrow x = m \vee x = -m $
HP1 = $ \{ -m \leq x \leq m \} $
*). Karena $ x \geq \sqrt{m^2 - x^2} \, $ yang mana $ \sqrt{m^2 - x^2} \geq 0 \, $ , maka haruslah nilai $ x \geq 0 \, $ (nilai $ x \, $ juga positif). Sehingga HP2 = $ \{ x \geq 0 \} $
$\clubsuit \, $ Kuadratkan pertidaksamaannya
$\begin{align} \sqrt{m^2 - x^2} & \leq x \\ (\sqrt{m^2 - x^2})^2 & \leq x^2 \\ m^2 - x^2 & \leq x^2 \\ m^2 - 2x^2 & \leq 0 \\ m^2 - 2x^2 & = 0 \rightarrow 2x^2 = m^2 \rightarrow x = \pm \sqrt{\frac{m^2}{2}} = \pm \frac{m}{\sqrt{2}} \end{align}$
HP3 = $ \{ x \leq -\frac{m}{\sqrt{2}} \vee x \geq \frac{m}{\sqrt{2}} \} $
Sehingga solusi totalnya :
HP = $ HP1 \cap HP2 \cap HP3 = \{ \frac{m}{\sqrt{2}} \leq x \leq m \} $
Jadi, penyelesaiannya adalah $ HP = \{ \frac{m}{\sqrt{2}} \leq x \leq m \} . \heartsuit$
Nomor 20
Semua nilai $ x \, $ yang memenuhi $ \frac{3\sqrt{2-x}}{x-1} < 2 \, $ adalah ....
$\spadesuit \, $ Syarat bentuk akar dan pecahan : $ \frac{3\sqrt{2-x}}{x-1} $
*). $ 2-x \geq 0 \rightarrow -x \geq -2 \rightarrow x \leq 2 \, $
*). Penyebut : $ x - 1 \neq 0 \rightarrow x \neq 1 $
dari kedua syarat, diperoleh : HP1 = $ \{ x \leq 2 , \, \, x \neq 1 \} $
$\spadesuit \, $ Menyelesaiakan pertidaksamaan :
$\begin{align} \frac{3\sqrt{2-x}}{x-1} & < 2 \\ \frac{3\sqrt{2-x}}{x-1} -2 & < 0 \\ \frac{3\sqrt{2-x} - 2(x-1) }{x-1} & < 0 \\ \text{akar-akarnya : } & \\ x-1 = 0 \vee & \, \, \, 3\sqrt{2-x} - 2(x-1) = 0 \\ x-1=0 \rightarrow x & = 1 \\ 3\sqrt{2-x} - 2(x-1) & = 0 \\ 3\sqrt{2-x} & = 2(x-1) \, \, \, \, \text{(kuadratkan)} \\ 9(2-x) & = 4(x^2-2x+1) \\ 4x^2 + x - 14 & = 0 \\ (4x-7)(x+2) & = 0 \\ x = \frac{7}{4} \vee x = -2 \end{align}$
untuk $ x = -2 \, $ tidak memenuhi karena $ 3\sqrt{2-(-2)} - 2((-2)-1) \neq 0 $
sehingga yang memenuhi $ x = \frac{7}{4} $
HP2 = $\{ x < 1 \vee x > \frac{7}{4} \} $
Sehingga solusinya :
HP = $ HP1 \cap HP2 = \{ x < 1 \vee \frac{7}{4} < x \leq 2 \} $
Jadi, solusinya $ HP = \{ x < 1 \vee \frac{7}{4} < x \leq 2 \} . \heartsuit $
*). $ 2-x \geq 0 \rightarrow -x \geq -2 \rightarrow x \leq 2 \, $
*). Penyebut : $ x - 1 \neq 0 \rightarrow x \neq 1 $
dari kedua syarat, diperoleh : HP1 = $ \{ x \leq 2 , \, \, x \neq 1 \} $
$\spadesuit \, $ Menyelesaiakan pertidaksamaan :
$\begin{align} \frac{3\sqrt{2-x}}{x-1} & < 2 \\ \frac{3\sqrt{2-x}}{x-1} -2 & < 0 \\ \frac{3\sqrt{2-x} - 2(x-1) }{x-1} & < 0 \\ \text{akar-akarnya : } & \\ x-1 = 0 \vee & \, \, \, 3\sqrt{2-x} - 2(x-1) = 0 \\ x-1=0 \rightarrow x & = 1 \\ 3\sqrt{2-x} - 2(x-1) & = 0 \\ 3\sqrt{2-x} & = 2(x-1) \, \, \, \, \text{(kuadratkan)} \\ 9(2-x) & = 4(x^2-2x+1) \\ 4x^2 + x - 14 & = 0 \\ (4x-7)(x+2) & = 0 \\ x = \frac{7}{4} \vee x = -2 \end{align}$
untuk $ x = -2 \, $ tidak memenuhi karena $ 3\sqrt{2-(-2)} - 2((-2)-1) \neq 0 $
sehingga yang memenuhi $ x = \frac{7}{4} $
HP2 = $\{ x < 1 \vee x > \frac{7}{4} \} $
Sehingga solusinya :
HP = $ HP1 \cap HP2 = \{ x < 1 \vee \frac{7}{4} < x \leq 2 \} $
Jadi, solusinya $ HP = \{ x < 1 \vee \frac{7}{4} < x \leq 2 \} . \heartsuit $