Pembahasan Suku Banyak UM UGM 2019 Matematika Ipa Kode 924

Soal yang Akan Dibahas
Jika suku banyak $ x^4+3x^3+Ax^2+x+B $ dibagi $ x^2+2x+2 $ bersisa $ 7x+14$, maka jika dibagi $ x^2+4x+2 $ akan bersisa .....
A). $ x + 1 \, $ B). $ x + 2 \, $ C). $ x + 3 $
D). $ 2x+1 \, $ E). $ 2x + 4 $

$\spadesuit $ Konsep Dasar
*). Untuk pembagian pada suku banyak (polinomial) menggunakan metode horner umum, silahkan baca artikelnya pada link berikut :
"Pembagian Suku Banyak dengan Metode Horner"

$\clubsuit $ Pembahasan
*). suku banyak $ x^4+3x^3+Ax^2+x+B $ dibagi $ x^2+2x+2 $ bersisa $ 7x+14$ :
*). Menentukan nilai $ A $ dan $ B $ dengan Metode Horner Umum :
$\begin{array}{c|cccccc} & 1 & 3 & A & 1 & B & \\ -2 & * & -2 & -2 & -2A+8 & * & \\ -2 & * & * & -2 & -2 & -2A+8 & + \\ \hline & 1 & 1 & A-4 & -2A+11 & B-2A+8 & \end{array} $
Sehingga sisa pembagiannya :
$ s(x) = (-2A+11)x + (B-2A+8) $
sisanya sama dengan $ 7x + 14 $, sehingga :
$ -2A+11 = 7 \rightarrow A = 2 $
$ B-2A+8 = 14 \rightarrow B = 10 $
Sehingga suku banyaknya menjadi :
$ x^4+3x^3+Ax^2+x+B = x^4+3x^3+2x^2+x+10 $
*). Menentukan sisa pembagian $ x^4+3x^3+2x^2+x+10 $ dengan $ x^2+4x+2 $
$\begin{array}{c|cccccc} & 1 & 3 & 2 & 1 & 10 & \\ -4 & * & -4 & 4 & -8 & * & \\ -2 & * & * & -4 & 4 & -8 & + \\ \hline & 1 & -1 & 2 & 1 & 2 & \end{array} $
Sehingga sisa pembagiannya :
$ s(x) = 1x+ 2 = x + 2 $
Jadi, sisanya $ x + 2 . \, \heartsuit $

Pembahasan Ketaksamaan Trigonometri UM UGM 2019 Matematika Ipa Kode 924

Soal yang Akan Dibahas
Jika $ -\frac{\pi}{2} < x < \frac{\pi}{2} $ dan $ x $ memenuhi $ 5\cos ^2 x + 3\sin x \cos x \geq 1 $ , maka himpunan semua $ y = \tan x $ adalah ....
A). $ \{y \in R : \, -1 \leq y \leq 4 \} \, $
B). $ \{y \in R : \, -4 \leq y \leq 1 \} \, $
C). $ \{y \in R : \, -4 \leq y \leq -1 \} \, $
D). $ \{y \in R : \, 1 \leq y \leq 4 \} \, $
E). $ R $

$\spadesuit $ Konsep Dasar
*). Langkah-langkah menyelesaikan pertidaksamaan
1). Nolkan salah satu ruas (biasanya ruas kanan),
2). tentukan akar-akar (pembuat nolnya),
3). Buat garis bilangan dan tentukan tandanya serta arsir daerahnya,
Jika tanda $ > 0 $ , maka arsir daerah positif,
Jika tanda $ < 0 $ , maka arsir daerah negatif,
4). Buat himpunan penyelesaiannya.
*). Rumus-rumus dasar trigonometri :
$ \sin ^2 x + \cos ^2 x = 1 $
$ \frac{\sin x}{\cos x } = \tan x $

$\clubsuit $ Pembahasan
*). Mengubah ketaksamaannya :
$\begin{align} 5\cos ^2 x + 3\sin x \cos x & \geq 1 \\ 5\cos ^2 x + 3\sin x \cos x & \geq \sin ^2 x + \cos ^2 x \\ \sin ^2 x - 4\cos ^2 x - 3\sin x \cos x & \leq 0 \\ \text{ (bagi dengan } \, \cos ^2 x ) & \\ \left( \frac{\sin x}{\cos x} \right)^2 - 4.1 - 3.\frac{\sin x}{\cos x} & \leq 0 \\ \left(\tan x \right)^2 - 4 - 3\tan x & \leq 0 \\ \left(\tan x \right)^2 - 3\tan x - 4 & \leq 0 \\ \text{ (substitusi } \,\tan x = y ) & \\ y^2 - 3y - 4 & \leq 0 \\ (y +1)(y-4) & \leq 0 \\ y = -1 \vee y & = 4 \\ \end{align} $
-). garis bilangannya :
 

Solusinya :
$ -1 \leq y \leq 4 $
Jadi, nilai $ y $ adalah $ \{ -1 \leq y \leq 4 \} . \, \heartsuit $

Pembahasan Matriks UM UGM 2019 Matematika Ipa Kode 924

Soal yang Akan Dibahas
Diberikan empat matriks A, B, C, D berukuran $ 2\times 2 $ dengan $A+CB^T=CD $. Jika A mempunyai invers, $ det(D^T-B)= m $ dan $ det(C) = n $ , maka $ det(2A^{-1}) = .... $
A). $ \frac{4}{mn} \, $ B). $ \frac{mn}{4} \, $ C). $ \frac{4m}{n} \, $ D). $ 4mn \, $ E). $ \frac{m+n}{4} \, $

$\spadesuit $ Konsep Dasar
*). Sifat transpose matriks :
1). $ A = (A^T)^T $
2). $ (A-B)^T = A^T -B^T $
*). Sifat-sifat determinan :
1). $ |A^T| = |A| $
2). $ |A.B| = |A|. |B| $
3). $ |A^{-1}| = \frac{1}{|A|} $
4). $ |k.A_{m\times m}| = k^m. |A| $

$\clubsuit $ Pembahasan
*). Diketahui $ det(D^T-B)= m $ dan $ det(C) = n $ :
*). Sifat transpose :
$ D - B^T = [(D-B^T)^T]^T = [D^T-(B^T)^T]^T = (D^T - B)^T $
*). Menentukan determinan matriks $ D - B^T $ :
$ |D - B^T| = | (D^T - B)^T | = |D^T - B | = m $
*). Menentukan determinan matriks A :
$\begin{align} A+CB^T& =CD \\ A & = CD - CB^T \\ A & = C(D - B^T) \\ |A| & = |C(D - B^T)| \\ |A| & = |C|.|(D - B^T)| \\ |A| & = n.m = mn \end{align} $
*). Menentukan $ det(2A^{-1}) $ :
$\begin{align} |2A^{-1}| & = 2^2 |A^{-1}| = 4 . \frac{1}{|A|} = 4. \frac{1}{mn} = \frac{4}{mn} \end{align} $
Jadi, nilai $ det(2A^{-1}) = \frac{4}{mn} . \, \heartsuit $

Cara 3 Pembahasan Polinomial UM UGM 2019 Matematika Ipa Kode 924

Soal yang Akan Dibahas
Jika $ (x-2)^2 $ membagi $ x^4-ax^3+bx^2+4x-4 $ , maka $ ab= .... $
A). $ 9 \, $ B). $ 12 \, $ C). $ 16 \, $ D). $ 20 \, $ E). $ 25 \, $

$\spadesuit $ Konsep Dasar
*). Misalkan polinomial $ f(x) $ habis dibagi $ p(x) $ artinya $ f(x) $ adalah hasil perkalian dengan $ p(x) $ yaitu : $ f(x) = p(x). h(x) $ dengan $ h(x) $ adalah faktor lainnya.
*). Proses berikutnya tinggal menyamakan nilai koefisien suku-suku yang sejenis.

$\clubsuit $ Pembahasan
*). Polinomial $ x^4-ax^3+bx^2+4x-4 $ dibagi $ (x-2)^2 = x^2 - 4x + 4 $ :
*). Bentuk faktor dari $ x^4-ax^3+bx^2+4x-4 $ :
$\begin{align} x^4-ax^3+bx^2+4x-4 & = (x^2-4x+4)(x^2 + px - 1) \\ x^4-ax^3+bx^2+4x-4 & = x^4 +px^3 -x^2 - 4x^3 -4px^2 \\ & \, \, \, +4x +4x^2 + 4px - 4 \\ x^4-ax^3+bx^2+4x-4 & = x^4 + (p-4)x^3 + (3-4p)x^2 + (4p+4)x - 4 \end{align} $
Dari kesamaan bentuk terakhir di atas, kita peroleh kesamaan berdasarkan koefisien suku-suku sejenis yaitu :
$ 4p+4 = 4 \rightarrow p = 0 $
$ -a = p-4 \rightarrow -a = 0-4 \rightarrow a = 4 $
$ b = 3-4p \rightarrow b = 3. 4.0 \rightarrow b = 3 $
*). Menentukan nilai $ ab $ :
$\begin{align} ab & = 4. 3 = 12 \end{align} $
Jadi, nilai $ ab = 12 . \, \heartsuit $