Soal dan Pembahasan UM UGM 2004 Matematika IPA


Nomor 1
Diketahui sebuah lingkaran L : $ x^2 + y^2 + y - 24 = 0 $. Jika melalui titik P(1,6) dibuat garis singgung pada L, maka jarak dari P ke titik singgung tadi adalah ....
A). $ 1 \, $ B). $ 2 \, $ C). $ 3 \, $ D). $ 4 \, $ E). $ 5 $
Nomor 2
Pada kubus ABCD.EFGH, titik P pada AE dengan 3AP = PE, dan $ \alpha $ adalah sudut antara PH dan BC. Nilai $ \sin \alpha $ adalah ....
A). $ \frac{2}{\sqrt{10}} \, $ B). $ \frac{4}{\sqrt{41}} \, $ C). $ \frac{2}{3} \, $ D). $ \frac{3}{4} \, $ E). $ \frac{3}{5} \, $
Nomor 3
Diketahui vektor $ \vec{u} = (2, -1, 1) $ dan $ \vec{v} = (-1,1,-1)$. $ \vec{w} $ vektor yang panjangnya satu, tegak lurus pada $ \vec{u} $ dan tegak lurus pada $ \vec{v} $ adalah ....
A). $ ( 0,0,1) $
B). $ \left(0, \frac{1}{2}\sqrt{2}, \frac{1}{2}\sqrt{2} \right) $
C). $ \left( 0, -\frac{1}{2}\sqrt{2}, \frac{1}{2}\sqrt{2} \right) $
D). $ \left( -\frac{2}{3}, \frac{1}{3}, \frac{2}{3} \right) $
E). $ \left( \frac{2}{3}, \frac{1}{3}, -\frac{2}{3} \right) $
Nomor 4
Himpunan semua nilai $ x $ yang memenuhi $ |x+8| - |3x - 4| \geq 0 $ adalah ....
A). $ \{ x| x \geq - 8 \} \, $
B). $ \{ x| x \leq \frac{4}{3} \} \, $
C). $ \{ x| -1 \leq x \leq 6 \} \, $
D). $ \{ x| -8 \leq x \leq \frac{4}{3} \} \, $
E). $ \{ x| x \leq -1 \, \text{ atau } \, x \geq 6 \} \, $
Nomor 5
AKar-akar persamaan $ 2x^2 + ax - 3 = 0 $ diketahui saling berkebalikan dengan akar-akar persamaan $ 3x^2 - 5x + 2b = 0 $. Nilai $ ab = .... $
A). $ -10 \, $ B). $ -5 \, $ C). $ 2 \, $ D). $ 5 \, $ E). $ 10 \, $

Nomor 6
$ \displaystyle \lim_{x \to 0 } \frac{\sqrt{1 + x} - 1 }{\sqrt[3]{1+x} - 1} = .... $
A). $ 0 \, $ B). $ \frac{2}{3} \, $ C). $ 1 \, $ D). $ \frac{3}{2} \, $ E). $ \infty \, $
Nomor 7
$ \displaystyle \lim_{x \to y } \frac{\tan x - \tan y}{\left(1 - \frac{x}{y}\right)(1 + \tan x. \tan y) } = .... $
A). $ 0 \, $ B). $ \frac{2}{3} \, $ C). $ 1 \, $ D). $ \frac{3}{2} \, $ E). $ \infty \, $
Nomor 8
Diberikan segitiga ABC dengan $ \angle ACB = 105^\circ $, $ \angle ABC = 45^\circ $, dan $ AB = \sqrt{2}+\sqrt{6} $ cm. Panjang sisi BC sama dengan ....
A). $ \sqrt{3} \, $ cm
B). $ \sqrt{6} \, $ cm
C). $ 2 \, $ cm
D). $ 3 \, $ cm
E). $ 2\sqrt{2} \, $ cm
Nomor 9
Jika $ x_1 $ dan $ x_2 $ akar-akar persamaan
$ \left( {}^5 \log (x+3) \right)^2 + 3 \, {}^5 \log ( x + 3) = {}^5 \log \frac{1}{25} $ ,
maka $ |x_1 - x_2 | = .... $
A). $ 0,12 \, $ B). $ 0,14 \, $ C). $ 0,16 \, $ D). $ 0,18 \, $ E). $ 0,20 \, $
Nomor 10
Penyelesaian pertaksamaan $ 4^{x-1} - 6. 2^{x-2} - 10 < 0 $ adalah ....
A). $ x < -1 + {}^2 \log 5 \, $
B). $ x < 2 + {}^2 \log 5 \, $
C). $ x < 1 + {}^2 \log 5 \, $
D). $ x < 1 - 2 \, {}^2 \log 5 \, $
E). $ x < 1 + 2 \, {}^2 \log 5 \, $

Nomor 11
Jika $ U_n $ adalah suku ke-$n$ suatu barisan geometri, maka jumlah 4 suku pertama barisan tersebut sama dengan .....
A). $ \frac{u_1(u_1-u_4)}{u_1 - u_2 } \, $
B). $ \frac{u_1-u_4}{u_1 - u_2 } \, $
C). $ \frac{u_1(u_1+u_5)}{u_1 - u_2 } \, $
D). $ \frac{u_1(u_1-u_5)}{u_1 - u_2 } \, $
E). $ \frac{u_1-u_5}{u_1 - u_2 } \, $
Nomor 12
Jumlah tiga suku pertama barisan aritmetika adalah 27 dan jumlah lima buah suku pertama barisan tersebut adalah 85, maka suku ke-4 barisan tersebut adalah ....
A). $ 33 \, $ B). $ 25 \, $ C). $ 17 \, $ D). $ 41 \, $ E). $ 49 $
Nomor 13
Jika D daerah dikuadran I yang dibatasi oleh parabola $ y^2 = 2x $ dan garis $ x - y = 4 $, maka luas D = ....
A). $ 40\sqrt{2} \, $ B). $ 40 \, $ C). $ \frac{64\sqrt{2}}{3} \, $ D). $ \frac{64}{3} \, $ E). $ 13\frac{1}{3} \, $
Nomor 14
Dari 8 pasangan suami-istri akan dibentuk tim beranggotakan 5 orang teridiri dari 3 pria dan 2 wanita dengan ketentuan tak boleh ada pasangan suami-istri. Banyaknya tim yang dapat dibentuk adalah ....
A). $ 56 \, $ B). $ 112 \, $ C). $ 336 \, $ D). $ 560 \, $ E). $ 672 \, $
Nomor 15
Jika $ x_1 $ dan $ x_2 $ akar-akar persamaan $ x^2 + kx + k = 0 $ , maka nilai $ k $ yang menjadikan $ x_1^3 + x_2^3 \, $ mencapai maksimum adalah ....
A). $ -2 \, $ B). $ -1 \, $ C). $ 2 \, $ D). $ 3 \, $ E). $ 4 $