Soal yang Akan Dibahas
Jika $ x_1 $ dan $ x_2 $ adalah solusi dari $ \sec x - 2 - 15\cos x = 0 $ dengan
$ 0 \leq x \leq \pi $ , $ x \neq \frac{\pi}{2} $ ,
maka $ \frac{1}{\cos x_1 . \cos x_2} = .... $
A). $ -20 \, $ B). $ -15 \, $ C). $ -10 \, $ D). $ -5 \, $ E). $ 0 \, $
A). $ -20 \, $ B). $ -15 \, $ C). $ -10 \, $ D). $ -5 \, $ E). $ 0 \, $
$\spadesuit $ Konsep Dasar
*). Rumus dasar trigonometri :
$ \sec x = \frac{1}{\cos x} $
*). Rumus dasar trigonometri :
$ \sec x = \frac{1}{\cos x} $
$\clubsuit $ Pembahasan
*). Menentukan nilai $ \cos x_1 $ dan $ \cos x_2 $ :
$ \begin{align} \sec x - 2 - 15\cos x & = 0 \\ \frac{1}{\cos x} - 2 - 15\cos x & = 0 \, \, \, \, \, \, \text{(kali } \cos x) \\ 1 - 2\cos x - 15\cos ^2 x & = 0 \, \, \, \, \, \, \text{(kali -1)} \\ 15\cos ^2 x + 2\cos x - 1 & = 0 \\ (5\cos x - 1)(3\cos x + 1) & = 0 \\ (5\cos x - 1) = 0 \vee (3\cos x + 1) & = 0 \\ \cos x = \frac{1}{5} \vee \cos x & = -\frac{1}{3} \\ \cos x_1 = \frac{1}{5} \vee \cos x_2 & = -\frac{1}{3} \end{align} $
*). Menentukan nilai $ \frac{1}{\cos x_1 . \cos x_2} $ :
$ \begin{align} \frac{1}{\cos x_1 . \cos x_2} & = \frac{1}{\frac{1}{5} . -\frac{1}{3}} = \frac{1}{-\frac{1}{15} } = -15 \end{align} $
Jadi, nilai $ \frac{1}{\cos x_1 . \cos x_2} = -15 . \, \heartsuit $
*). Menentukan nilai $ \cos x_1 $ dan $ \cos x_2 $ :
$ \begin{align} \sec x - 2 - 15\cos x & = 0 \\ \frac{1}{\cos x} - 2 - 15\cos x & = 0 \, \, \, \, \, \, \text{(kali } \cos x) \\ 1 - 2\cos x - 15\cos ^2 x & = 0 \, \, \, \, \, \, \text{(kali -1)} \\ 15\cos ^2 x + 2\cos x - 1 & = 0 \\ (5\cos x - 1)(3\cos x + 1) & = 0 \\ (5\cos x - 1) = 0 \vee (3\cos x + 1) & = 0 \\ \cos x = \frac{1}{5} \vee \cos x & = -\frac{1}{3} \\ \cos x_1 = \frac{1}{5} \vee \cos x_2 & = -\frac{1}{3} \end{align} $
*). Menentukan nilai $ \frac{1}{\cos x_1 . \cos x_2} $ :
$ \begin{align} \frac{1}{\cos x_1 . \cos x_2} & = \frac{1}{\frac{1}{5} . -\frac{1}{3}} = \frac{1}{-\frac{1}{15} } = -15 \end{align} $
Jadi, nilai $ \frac{1}{\cos x_1 . \cos x_2} = -15 . \, \heartsuit $