Cara 2 Pembahasan Integral SBMPTN 2018 Matematika IPA kode 452

Soal yang Akan Dibahas
Nilai $ \int \limits_0^1 15x \sqrt{1-x} dx $ adalah .....
A). $ 1 \, $ B). $ 2 \, $ C). $ 3 \, $ D). $ 4 \, $ E). $ 5 $

$\spadesuit $ Konsep Dasar
*). Rumus dasar integral :
$ \int k(ax+b)^n dx = \frac{1}{a}.\frac{k}{n+1}(ax+b)^{n+1} + c $
*). Salah satu teknik integral adalah integral parsial atau Tanzalin.
*). Teknik Tanzalin adalah salah satu fungsi diturunkan dan satunya lagi diintegralkan.

$\clubsuit $ Pembahasan
*). Soal : $ \int \limits_0^1 15x \sqrt{1-x} dx $
*). Teknik Tanzalin :
$ \begin{array}{c|c} \text{Turunan} & \text{integral} \\ (+) 15x & \sqrt{1-x} = (1-x)^\frac{1}{2} \\ (-) 15 & \frac{1}{-1}. \frac{2}{3} (1-x)^\frac{3}{2} = -\frac{2}{3} (1-x)^\frac{3}{2} \\ 0 & - \frac{2}{3} . \frac{1}{-1} . \frac{2}{5} (1-x)^\frac{5}{2} = \frac{4}{15} (1-x)^\frac{5}{2} \end{array} $
*). Hasil integralnya :
$ = 15x. -\frac{2}{3} (1-x)^\frac{3}{2} + (-15). \frac{4}{15} (1-x)^\frac{5}{2} $
$ = -10x (1-x)^\frac{3}{2} -4 (1-x)^\frac{5}{2} $
*). Substitusi batas-batasnya :
$\begin{align} & \int \limits_0^1 15x \sqrt{1-x} dx \\ & = \left[ -10x (1-x)^\frac{3}{2} -4 (1-x)^\frac{5}{2} \right]_0^1 \\ & = \left[ -10.1 (1-1)^\frac{3}{2} -4 (1-1)^\frac{5}{2} \right] - \left[ -10.0 (1-0)^\frac{3}{2} -4 (1-0)^\frac{5}{2} \right] \\ & = \left[ 0 \right] - \left[ 0 - 4 \right] = 4 \end{align} $
Jadi, hasil integralnya adalah $ 4 . \, \heartsuit $

Pembahasan Integral SBMPTN 2018 Matematika IPA kode 452

Soal yang Akan Dibahas
Nilai $ \int \limits_0^1 15x \sqrt{1-x} dx $ adalah .....
A). $ 1 \, $ B). $ 2 \, $ C). $ 3 \, $ D). $ 4 \, $ E). $ 5 $

$\spadesuit $ Konsep Dasar
*). Rumus dasar integral :
$ \int ax^n dx = \frac{a}{n+1}x^{n+1} + c $
*). Salah satu teknik integral adalah integral subsitusi.

$\clubsuit $ Pembahasan
*). Soal : $ \int \limits_0^1 15x \sqrt{1-x} dx $
*). Teknik substitusi :
Misalkan : $ 1 - x = u \rightarrow x = 1 - u $
turunannya : $ \frac{du}{dx} = -1 \rightarrow dx = -du $
*). Menentukan integral dengan teknik substitusi :
$\begin{align} & \int \limits_0^1 15x \sqrt{1-x} dx \\ & = \int 15 (1-u) \sqrt{u} . (-du) \\ & = -15 \int (u^\frac{1}{2} - u^\frac{3}{2} ) du \\ & = -15 (\frac{2}{3} u^\frac{3}{2} - \frac{2}{5} u^\frac{5}{2} ) + C \\ & = -15 \left[ \frac{2}{3} (1-x)^\frac{3}{2} - \frac{2}{5} (1-x)^\frac{5}{2}\right]_0^1 \\ & = -15 \left[ \left( \frac{2}{3} (1-1)^\frac{3}{2} - \frac{2}{5} (1-1)^\frac{5}{2} \right) - \left( \frac{2}{3} (1-0)^\frac{3}{2} - \frac{2}{5} (1-0)^\frac{5}{2} \right)\right] \\ & = -15 \left[ \left( 0 - 0 \right) - \left( \frac{2}{3} - \frac{2}{5} \right)\right] \\ & = -15 \left[ - \frac{2}{3} + \frac{2}{5} \right] \\ & = 10 - 6 = 4 \end{align} $
Jadi, hasil integralnya adalah $ 4 . \, \heartsuit $

Cara 2 Pembahasan PGS Kurva SBMPTN 2018 Matematika IPA kode 452

Soal yang Akan Dibahas
Segitiga yang dibatasi oleh sumbu $ x $ , sumbu $ y $ , dan garis singgung pada kurva $ y = \frac{1}{3}x^3 + 1 $ di titik $ P(a,b) $ pada kuadran II, berbentuk segitiga sama kaki. Nilai $ ab $ adalah .....
A). $ -\frac{2}{3} \, $ B). $ -\frac{23}{48} \, $ C). $ -\frac{86}{243} \, $ D). $ -\frac{191}{768} \, $ E). $ -\frac{374}{1875} $

$\spadesuit $ Konsep Dasar
*). Persamaan garis singgung kurva (PGSV) $ y = f(x) $ di titik singgung $ (x_1,y_1) $ :
$ \, \, \, \, \, \, \, y-y_1 = m(x-x_1) $
dengan $ m = f^\prime (x_1) $
*). Gradien ( $ m $) adalah kemiringan garis dengan $ m = \tan \theta $
dimana $ \theta $ = sudut yang dibentuk oleh garis.

$\clubsuit $ Pembahasan
*). Persamaan garis singgung di titik $ P(a,b) $ :
Kurva : $ y = \frac{1}{3}x^3 + 1 \rightarrow f^\prime (x) = x^2 $
Karena $ P(a,b) $ ada di kuadran II, maka $ a < 0 $ (negatif).
*). Substitusi titik $ P(a,b) $ ke kurva :
$ x = a \rightarrow b = \frac{1}{3}a^3 + 1 $
*). Gradien garis singgung :
$ m = f^\prime (x_1) = f^\prime (a) = a^2 $
*). Ilustrasi gambar.
 

*). Karena $ \Delta MNO $ sama kaki, maka MO = NO
sehingga $ \tan \theta = \frac{de}{sa} = \frac{NO}{MO} \rightarrow \tan \theta = 1 $.
*). Menentukan nilai $ a $ dari gradien :
$ m = \tan \theta \rightarrow a^2 = 1 \rightarrow a = \pm 1 $
Karena $ a < 0 $ , maka yang memenuhi $ a = -1 $.
sehingga nilai $ b $ :
$ b = \frac{1}{3}a^3 + 1 = \frac{1}{3}.(-1)^3 + 1 = \frac{2}{3} $
*). Menentukan nilai $ ab $ :
$\begin{align} ab & = -1. \frac{2}{3} = - \frac{2}{3} \end{align} $
Jadi, nilai $ ab = -\frac{2}{3} . \, \heartsuit $

Pembahasan PGS Kurva SBMPTN 2018 Matematika IPA kode 452

Soal yang Akan Dibahas
Segitiga yang dibatasi oleh sumbu $ x $ , sumbu $ y $ , dan garis singgung pada kurva $ y = \frac{1}{3}x^3 + 1 $ di titik $ P(a,b) $ pada kuadran II, berbentuk segitiga sama kaki. Nilai $ ab $ adalah .....
A). $ -\frac{2}{3} \, $ B). $ -\frac{23}{48} \, $ C). $ -\frac{86}{243} \, $ D). $ -\frac{191}{768} \, $ E). $ -\frac{374}{1875} $

$\spadesuit $ Konsep Dasar
*). Persamaan garis singgung kurva (PGSV) $ y = f(x) $ di titik singgung $ (x_1,y_1) $ :
$ \, \, \, \, \, \, \, y-y_1 = m(x-x_1) $
dengan $ m = f^\prime (x_1) $

$\clubsuit $ Pembahasan
*). Menyusun persamaan garis singgung di titik $ P(a,b) $ :
Kurva : $ y = \frac{1}{3}x^3 + 1 \rightarrow f^\prime (x) = x^2 $
Karena $ P(a,b) $ ada di kuadran II, maka $ a < 0 $ (negatif).
-). Menentukan titik singgungnya :
$ x = a \rightarrow b = \frac{1}{3}a^3 + 1 $
sehingga titik singgungnya :
$ (x_1,y_1) = (a,b) = \left( a, \frac{1}{3}a^3 + 1 \right) $
-). Menentukan gradien garis singgungnya :
$ m = f^\prime (x_1) = f^\prime (a) = a^2 $
-). Menentukan persamaan garis singgungnya :
$\begin{align} y-y_1 & = m(x-x_1) \\ y- \left( \frac{1}{3}a^3 + 1 \right) & = a^2(x-a) \end{align} $
*). Menentukan titik potong (tipot) garis singgung terhadap sumbu-sumbu koordinat:
-). Tipot sumbu X : substitusi $ y = 0 $
$\begin{align} y- \left( \frac{1}{3}a^3 + 1 \right) & = a^2(x-a) \\ 0 - \left( \frac{1}{3}a^3 + 1 \right) & = a^2(x-a) \\ -\frac{1}{3}a^3 - 1 & = a^2x-a^3 \\ a^2x & = \frac{2}{3}a^3 - 1 \\ x & = \frac{\frac{2}{3}a^3 - 1}{a^2} \end{align} $
Sehingga titik potong sumbu X : $ M\left(\frac{\frac{2}{3}a^3 - 1}{a^2} ,0 \right) $
-). Tipot sumbu Y : substitusi $ x = 0 $
$\begin{align} y- \left( \frac{1}{3}a^3 + 1 \right) & = a^2(x-a) \\ y- \left( \frac{1}{3}a^3 + 1 \right) & = a^2(0-a) \\ y- \left( \frac{1}{3}a^3 + 1 \right) & = -a^3 \\ y & = -\frac{2}{3}a^3 + 1 \end{align} $
Sehingga titik potong sumbu Y : $ N\left(0,-\frac{2}{3}a^3 + 1 \right) $
*). Ilustrasi gambar.
 

*). Karena $ \Delta MNO $ sama kaku, maka MO = NO :
$\begin{align} MO & = NO \\ 0 - \left(\frac{\frac{2}{3}a^3 - 1}{a^2} \right) & = \left( -\frac{2}{3}a^3 + 1 \right) - 0 \\ \left(\frac{-\frac{2}{3}a^3 + 1}{a^2} \right) & = \left( -\frac{2}{3}a^3 + 1 \right) - 0 \\ \left( -\frac{2}{3}a^3 + 1 \right) & = a^2 \left( -\frac{2}{3}a^3 + 1 \right) \\ 1 & = a^2 \\ a & = \pm 1 \end{align} $
Karena $ a < 0 $ , maka yang memenuhi $ a = -1 $.
sehingga nilai $ b $ :
$ b = \frac{1}{3}a^3 + 1 = \frac{1}{3}.(-1)^3 + 1 = \frac{2}{3} $
*). Menentukan nilai $ ab $ :
$\begin{align} ab & = -1. \frac{2}{3} = - \frac{2}{3} \end{align} $
Jadi, nilai $ ab = -\frac{2}{3} . \, \heartsuit $