Nomor 1
Jika $ \sqrt{3^{-\frac{1}{2}} + 1} = \frac{\sqrt{a+1}}{3^{-\frac{1}{4}}} $ ,
maka $ a = ... $
A). $ -\frac{2}{3} + 3^{-\frac{1}{2}} \, $ B). $ -\frac{1}{3} + 3^{-\frac{1}{2}} \, $
C). $ \frac{1}{3} - 3^{-\frac{1}{2}} \, $ D). $ \frac{2}{3} + 3^{-\frac{1}{2}} \, $
E). $ \frac{2}{3} + 3^{-\frac{1}{2}} $
A). $ -\frac{2}{3} + 3^{-\frac{1}{2}} \, $ B). $ -\frac{1}{3} + 3^{-\frac{1}{2}} \, $
C). $ \frac{1}{3} - 3^{-\frac{1}{2}} \, $ D). $ \frac{2}{3} + 3^{-\frac{1}{2}} \, $
E). $ \frac{2}{3} + 3^{-\frac{1}{2}} $
Nomor 2
Diberikan $ y > x > 0 $. Jika $ {}^9 \log (y^2 - x^2) = a $ dan $ {}^{x+y} \log 3 = b $ ,
maka $ {}^{27} \log (y-x) = ... $
A). $ \frac{3ab + 1}{2a} \, $ B). $ \frac{3ab - 1}{2b} \, $ C). $ \frac{2ab - 1}{3b} \, $
D). $ \frac{2ab + 1}{3a} \, $ E). $ \frac{2ab - 1}{3a} $
A). $ \frac{3ab + 1}{2a} \, $ B). $ \frac{3ab - 1}{2b} \, $ C). $ \frac{2ab - 1}{3b} \, $
D). $ \frac{2ab + 1}{3a} \, $ E). $ \frac{2ab - 1}{3a} $
Nomor 3
Diketahui garis $ y = c - x $ memotong kurva $ y = ax^2 + bx - c $ dengan $ a \neq 0 $ di
titik $ (-2,5) $. Jika kurva tersebut simetris terhadap garis $ x = 1 $ , maka
nilai $ a + b + c $ adalah ...
A). $ 1 \, $ B). $ 2 \, $ C). $ 3 \, $ D). $ 4 \, $ E). $ 5 $
A). $ 1 \, $ B). $ 2 \, $ C). $ 3 \, $ D). $ 4 \, $ E). $ 5 $
Nomor 4
Persamaan kuadrat $ 3x^2 + 8x - c = 0 $ mempunyai akar-akar $ x_1 $ dan $ x_2 $ dengan
$ x_1 = -\frac{1}{x_2} $ . Jika $ x_1 > x_2 $ , maka persamaan kuadrat baru yang
akar-akarnya $ \frac{1}{x_1+1} $ dan $ \frac{1}{x_2 - 2} $ adalah ...
A). $ 10x^2 - 11x - 3 = 0 \, $
B). $ 10x^2 + 11x + 3 = 0 \, $
C). $ 20x^2 - 11x - 3 = 0 \, $
D). $ 20x^2 + 11x + 3 = 0 \, $
E). $ 20x^2 - 11x + 3 = 0 \, $
A). $ 10x^2 - 11x - 3 = 0 \, $
B). $ 10x^2 + 11x + 3 = 0 \, $
C). $ 20x^2 - 11x - 3 = 0 \, $
D). $ 20x^2 + 11x + 3 = 0 \, $
E). $ 20x^2 - 11x + 3 = 0 \, $
Nomor 5
Jumlah semua nilai $ x $ yang memenuhi $ y - \frac{15}{x} = -(x+2) $ dan $ x-y-3=0 $
adalah ...
A). $ \frac{1}{2} \, $ B). $ 1 \, $ C). $ \frac{3}{2} \, $ D). $ \frac{5}{2} \, $ E). $ \frac{7}{2} \, $
A). $ \frac{1}{2} \, $ B). $ 1 \, $ C). $ \frac{3}{2} \, $ D). $ \frac{5}{2} \, $ E). $ \frac{7}{2} \, $
Nomor 6
Himpunan semua nilai $ x $ yang memenuhi $ \frac{\sqrt{x+1}}{\sqrt{2x-1}} \geq 1 $
adalah $ \{ x|x \in R , a < x < b \} $ . Nilai $ ab = ...$
A). $ -2 \, $ B). $ -\frac{1}{2} $ C). $ 1 \, $ D). $ \frac{5}{2} \, $ E). $ 2 $
A). $ -2 \, $ B). $ -\frac{1}{2} $ C). $ 1 \, $ D). $ \frac{5}{2} \, $ E). $ 2 $
Nomor 7
Nilai minimum dari $ 3x + 2y - 1 $ untuk $ x $ dan $ y $ yang memenuhi $ 2x + y \geq 4 $ ,
$ y - x \leq 1 $ , $ 2y - x \geq -4 $ , $ x \leq 6 $ , dan $ y \geq 0 $ adalah ...
A). $ 5 \, $ B). $ 6 \, $ C). $ 8 \, $ D). $ 9 \, $ E). $ 11 $
A). $ 5 \, $ B). $ 6 \, $ C). $ 8 \, $ D). $ 9 \, $ E). $ 11 $
Nomor 8
Jika bilangan 2001 ditulis dalam bentuk $ 1-2+3-4+...+(n-2)-(n-1)+n $ maka jumlahan
digit-digit dari bilangan $ n $ sama dengan ...
A). $ 5 \, $ B). $ 6 \, $ C). $ 7 \, $ D). $ 8 \, $ E). $ 9 $
A). $ 5 \, $ B). $ 6 \, $ C). $ 7 \, $ D). $ 8 \, $ E). $ 9 $
Nomor 9
Diberikan tiga persegi. Panjang sisi persegi I, II, dan III membentuk barisan geometri.
Keliling persegi I, II, dan III membentuk barisan aritmetika. Diketahui juga jumlah
keliling ketiga persegi 14 meter. Panjang sisi persegi yang terkecil adalah ... meter.
A). $ \frac{7}{6} \, $ B). $ 1 \, $ C). $ \frac{3}{2} \, $ D). $ \frac{1}{2} \, $ E). $ \frac{1}{4} $
A). $ \frac{7}{6} \, $ B). $ 1 \, $ C). $ \frac{3}{2} \, $ D). $ \frac{1}{2} \, $ E). $ \frac{1}{4} $
Nomor 10
Diketahui matriks $ A = \left( \begin{matrix} 5 & -3 \\ -2 & 1 \end{matrix} \right) $.
Jika $ A^{-1} $ adalah invers matriks A dan $ A^T $ adalah transpose matriks A, maka
determinan matriks B yang memenuhi $ AB = A^{-1} + A^T $ adalah ...
A). $ -41 \, $ B). $ -9 \, $ C). $ 9 \, $ D). $ 31 \, $ E). $ 41 $
A). $ -41 \, $ B). $ -9 \, $ C). $ 9 \, $ D). $ 31 \, $ E). $ 41 $
Nomor 11
Diketahui P, Q, dan R adalah sudut-sudut suatu segitiga. Jika Q lancip dan
$ \sqrt{2}\tan ^2 Q - \tan Q = 0 $ , maka $ \sin (P+R) = ...$
A). $ -\frac{1}{3}\sqrt{3} \, $ B). $ -\frac{1}{2} \, $ C). $ \frac{1}{3}\sqrt{3} \, $ D). $ \frac{1}{2} \, $ E). $ \frac{1}{2}\sqrt{3} $
A). $ -\frac{1}{3}\sqrt{3} \, $ B). $ -\frac{1}{2} \, $ C). $ \frac{1}{3}\sqrt{3} \, $ D). $ \frac{1}{2} \, $ E). $ \frac{1}{2}\sqrt{3} $
Nomor 12
Suatu kotak berisi 4 koin (mata uang) seimbang dan 6 koin tidak seimbang. Ketika koin
dilempar, peluang mendapat gambar adalah 0,5. Sedangkan untuk mata uang yang tidak
seimbang peluang mendapat gambar adalah 0,8. Satu koin diambil secara acar dari kotak
tersebut kemudian dilempar. Peluang mendapat gambar adalah ...
A). $ 0,6 \, $ B). $ 0,64 \, $ C). $ 0,68 \, $ D). $ 0,72 \, $ E). $ 0,76 $
A). $ 0,6 \, $ B). $ 0,64 \, $ C). $ 0,68 \, $ D). $ 0,72 \, $ E). $ 0,76 $
Nomor 13
Dalam suatu grup yang terdiri dari 5 orang, jumlah umur setiap 4 orang diantaranya adalah
124, 128, 130, 136, dan 142. Orang termuda dari 5 orang tersebut berumur ...
A). $ 18 \, $ B). $ 21 \, $ C). $ 23 \, $ D). $ 25 \, $ E). $ 34 $
A). $ 18 \, $ B). $ 21 \, $ C). $ 23 \, $ D). $ 25 \, $ E). $ 34 $
Nomor 14
Domain fungsi $ f(x) = \frac{2x+1+a}{x+a} $ adalah $ \{ x \in R, x \neq -a \} $ . Jika
domain $ f^{-1} $ sama dengan domain $ f $ , maka $ a = ...$
A). $ 3 \, $ B). $ 2 \, $ C). $ 1 \, $ D). $ -1 \, $ E). $ -2 $
A). $ 3 \, $ B). $ 2 \, $ C). $ 1 \, $ D). $ -1 \, $ E). $ -2 $
Nomor 15
Jika $ \displaystyle \lim_{x \to 3} \frac{x^n - 3^n}{x^\frac{n}{3} - 3^\frac{n}{3}} =
3\sqrt[3]{81} $ , maka $ n = ...$
A). $ 1 \, $ B). $ 2 \, $ C). $ 3 \, $ D). $ 4 \, $ E). $ 5 $
A). $ 1 \, $ B). $ 2 \, $ C). $ 3 \, $ D). $ 4 \, $ E). $ 5 $
Nomor 16
Jika kurva $ y = x^2 + ax + b $ dan $ y = x^3 + (c+1)x + a $ mempunyai garis singgung yang sama
di titik $ (1,6) $ , maka $ a + b + c = ...$
A). $ 2 \, $ B). $ 3 \, $ C). $ 4 \, $ D). $ 5 \, $ E). $ 6 $
A). $ 2 \, $ B). $ 3 \, $ C). $ 4 \, $ D). $ 5 \, $ E). $ 6 $
Nomor 17
Fungsi $ f(x) = \frac{x^2 + 2x + 5}{x + 1} $ dengan $ x \neq -1 $ mencapai ...
A). maksimum di $ x = 3 $
B). maksimum di $ x = 1 $
C). maksimum di $ x = -3 $
D). minimum di $ x = 0 $
E). minimum di $ x = -2 $
A). maksimum di $ x = 3 $
B). maksimum di $ x = 1 $
C). maksimum di $ x = -3 $
D). minimum di $ x = 0 $
E). minimum di $ x = -2 $
Nomor 18
Diketahui $ P = \left( \begin{matrix} \cos x & 2\cos x \\ \sin x & \tan x
\end{matrix} \right) $ dan $ 0 \leq x \leq \pi $ . Jika $ |P| $ menyatakan determinan P,
maka banyaknya $ x $ yang memenuhi $ |P| = 0 $ adalah ...
A). $ 4 \, $ B). $ 3 \, $ C). $ 2 \, $ D). $ 1 \, $ E). $ 0 \, $
A). $ 4 \, $ B). $ 3 \, $ C). $ 2 \, $ D). $ 1 \, $ E). $ 0 \, $
Nomor 19
Jika $ {}^2 \log ab = -1 $ dan $ \frac{{}^2 \log a}{{}^b \log 2} = -6 $ , maka persamaan
kuadrat yang memiliki akar-akar $ \frac{8}{3}(a+b) - 9 $ dan $ \frac{a+b}{3a^3b^3} $
adalah ...
A). $ x^2 + 13x - 22 = 0 \, $
B). $ x^2 - 13x + 22 = 0 \, $
C). $ x^2 - 13x - 22 = 0 \, $
D). $ x^2 + 11x - 22 = 0 \, $
E). $ x^2 - 11x + 22 = 0 \, $
A). $ x^2 + 13x - 22 = 0 \, $
B). $ x^2 - 13x + 22 = 0 \, $
C). $ x^2 - 13x - 22 = 0 \, $
D). $ x^2 + 11x - 22 = 0 \, $
E). $ x^2 - 11x + 22 = 0 \, $
Nomor 20
Diketahui akar-akar persamaan kuadrat $ x^2 - b^2x + c = 0 $ adalah $ q $ dan $ 3q $. Jika
$ 1, b, c - 4 $ membentuk tiga suku berurutan dari barisan geometri, maka
$ \frac{-b^2 + c}{q} = ... $
A). $ -2 \, $ B). $ -1 \, $ C). $ 0 \, $ D). $ 1 \, $ E). $ 2 $
A). $ -2 \, $ B). $ -1 \, $ C). $ 0 \, $ D). $ 1 \, $ E). $ 2 $
Tidak ada komentar:
Posting Komentar
Catatan: Hanya anggota dari blog ini yang dapat mengirim komentar.