Soal yang Akan Dibahas
Jika $ x_1 $ dan $ x_2 $ memenuhi
$ \left( {}^{2-x} \log 27 \right)^2 = 9 $ , maka nilai
$ x_1 + x_2 $ adalah ...
A). $ \frac{8}{3} \, $ B). $ \frac{5}{3} \, $ C). $ \frac{2}{3} \, $ D). $ -\frac{2}{3} \, $ E). $ -\frac{8}{3} $
A). $ \frac{8}{3} \, $ B). $ \frac{5}{3} \, $ C). $ \frac{2}{3} \, $ D). $ -\frac{2}{3} \, $ E). $ -\frac{8}{3} $
$\spadesuit $ Konsep Dasar
*). Definisi logaritma :
$ {}^a \log b = c \rightarrow b = a^c $
*). Sifat logaritma :
$ {}^{a} \log b^n = n. {}^a \log b $
*). Sifat eksponen : $ (a.b)^n = a^n . b^n $ dan $ a^{-n} = \frac{1}{a^n} $
*). Definisi logaritma :
$ {}^a \log b = c \rightarrow b = a^c $
*). Sifat logaritma :
$ {}^{a} \log b^n = n. {}^a \log b $
*). Sifat eksponen : $ (a.b)^n = a^n . b^n $ dan $ a^{-n} = \frac{1}{a^n} $
$\clubsuit $ Pembahasan
*). Menyelesaikan persamaannya :
$\begin{align} \left( {}^{2-x} \log 27 \right)^2 & = 9 \\ \left( {}^{2-x} \log 3^3 \right)^2 & = 9 \\ \left(3 . {}^{2-x} \log 3 \right)^2 & = 9 \\ 3^2 . \left( {}^{2-x} \log 3 \right)^2 & = 9 \\ 9 . \left( {}^{2-x} \log 3 \right)^2 & = 9 \, \, \, \, \, \, \, \, \text{(bagi 9)} \\ \left( {}^{2-x} \log 3 \right)^2 & = 1 \\ \left( {}^{2-x} \log 3 \right) & = \pm \sqrt{ 1 } \\ \left( {}^{2-x} \log 3 \right) & = \pm 1 \\ {}^{2-x} \log 3 = 1 \vee {}^{2-x} \log 3 & = - 1 \\ (2-x)^1 = 3 \vee (2-x)^{-1} & = 3 \\ 2-x = 3 \vee \frac{1}{2-x} & = 3 \\ x = 2 - 3 \vee 2-x & = \frac{1}{3} \\ x = -1 \vee x & = 2 - \frac{1}{3} \\ x_1 = -1 \vee x_2 & = \frac{5}{3} \end{align} $
*). Menentukan nilai $ x_1 + x_2 $ :
$\begin{align} x_1+ x_2 & = -1 + \frac{5}{3} = \frac{2}{3} \end{align} $
Jadi, nilai $ x_1 + x_2 = \frac{2}{3} . \, \heartsuit $
*). Menyelesaikan persamaannya :
$\begin{align} \left( {}^{2-x} \log 27 \right)^2 & = 9 \\ \left( {}^{2-x} \log 3^3 \right)^2 & = 9 \\ \left(3 . {}^{2-x} \log 3 \right)^2 & = 9 \\ 3^2 . \left( {}^{2-x} \log 3 \right)^2 & = 9 \\ 9 . \left( {}^{2-x} \log 3 \right)^2 & = 9 \, \, \, \, \, \, \, \, \text{(bagi 9)} \\ \left( {}^{2-x} \log 3 \right)^2 & = 1 \\ \left( {}^{2-x} \log 3 \right) & = \pm \sqrt{ 1 } \\ \left( {}^{2-x} \log 3 \right) & = \pm 1 \\ {}^{2-x} \log 3 = 1 \vee {}^{2-x} \log 3 & = - 1 \\ (2-x)^1 = 3 \vee (2-x)^{-1} & = 3 \\ 2-x = 3 \vee \frac{1}{2-x} & = 3 \\ x = 2 - 3 \vee 2-x & = \frac{1}{3} \\ x = -1 \vee x & = 2 - \frac{1}{3} \\ x_1 = -1 \vee x_2 & = \frac{5}{3} \end{align} $
*). Menentukan nilai $ x_1 + x_2 $ :
$\begin{align} x_1+ x_2 & = -1 + \frac{5}{3} = \frac{2}{3} \end{align} $
Jadi, nilai $ x_1 + x_2 = \frac{2}{3} . \, \heartsuit $
Tidak ada komentar:
Posting Komentar
Catatan: Hanya anggota dari blog ini yang dapat mengirim komentar.