Pembahasan Soal SNMPTN Matematika Dasar kode 201 tahun 2008 nomor 6 sampai 10


Nomor 6
Nilai maksimum dari $F=2x+3y$ pada daerah $3x+y \geq 9 , \, 3x+2y \leq 12, \, x \geq 0 , \, y \geq 0 $ adalah ...
$\spadesuit \, $ Menentukan titik pojok
$3x+y \geq 9 \rightarrow $ (0,9) , (3,0)
titik (3,0) adalah titik pojok karena memenuhi pertidaksamaan kedua
$3x+2y \leq 12 \rightarrow $ (0,6), (4,0)
titik (4,0) adalah titik pojok karena memenuhi pertidaksamaan pertama
$\spadesuit \, $ Titik potong kedua garis dengan eliminasi
$\begin{array}{cc} 3x+y = 9 & \\ 3x+2y = 12 & - \\ \hline y=3,x=2 \end{array}$
titik pojok ketiga (2,3)
$\spadesuit \, $ Substitusi semua titik pojok ke fungsi tujuan : $F=2x+3y$
(3,0) $\rightarrow F = 2\times 3 + 3 \times 0 = 6 $
(4,0) $\rightarrow F = 2\times 4 + 3 \times 0 = 8 $
(2,3) $\rightarrow F = 2\times 2 + 3 \times 3 = 13 $
Jadi, nilai maksimumnya adalah 13. $ \heartsuit $
Nomor 7
Jika garis $g$ menyinggung kurva $y=\sin x + \cos x $ di titik yang absisnya $\frac{1}{2}\pi$ , maka garis $g$ memotong sumbu Y di titik ...
$\clubsuit \, $ Substitusi absis = $\frac{\pi}{2} $ ke kurva
$y=\sin x + \cos x \rightarrow y= \sin \frac{\pi}{2} + \cos \frac{\pi}{2} = 1 + 0 = 0 $
titik singgungnya ($\frac{\pi}{2} , 1 $ ) sebagai ($x_1,y_1$)
$\clubsuit \, $ Gradien garis singgung : $m = f^\prime (x) $
$\begin{align} y & = \sin x + \cos x \\ y^\prime & = \cos x - \sin x \\ m & = f^\prime \left( \frac{\pi}{2} \right) \\ m & = \cos \frac{\pi}{2} - \sin \frac{\pi}{2} = 0 - 1 = -1 \end{align}$
$\clubsuit \, $ Persamaan garis singgung
$\begin{align} y-y_1 & = m (x-x_1) \\ y-1 & = -1 \left( x- \frac{\pi}{2} \right) \\ y & = -x + \frac{\pi}{2} + 1 \end{align}$
$\clubsuit \, $ Titik potong sumbu Y, substitusi $x=0$
$y = -x + \frac{\pi}{2} + 1 \rightarrow y = -0 + \frac{\pi}{2} + 1 = 1 + \frac{1}{2}\pi $
Jadi, titik potong sumbu Y adalah $ \left( 0, 1 + \frac{1}{2}\pi \right) \heartsuit$
Nomor 8
Jika $\sin \theta + \cos \theta = \frac{1}{2} $ , maka $\sin ^3 \theta + \cos ^3 \theta = ... $
$\spadesuit \, $ Rumus dasar (identitas trigonometri) : $\sin ^2 \theta + \cos ^2 \theta = 1 $
$\spadesuit \, $ Kuadratkan persamaan :
$\begin{align*} \left( \sin \theta + \cos \theta \right)^2 = \left( \frac{1}{2} \right)^2 \\ \sin ^2 \theta + \cos ^2 \theta + 2\sin \theta \cos \theta & = \frac{1}{4} \\ 1 + 2\sin \theta \cos \theta & = \frac{1}{4} \\ \sin \theta \cos \theta & = -\frac{3}{8} \end{align*}$
$\spadesuit \, $ Rumus dasar : $A^3+B^3=(A+B)^3 - 3AB(A+B) $
$\spadesuit \, $ Menentukan $\sin ^3 \theta + \cos ^3 \theta$
$\begin{align*} \sin ^3 \theta + \cos ^3 \theta & = (\sin \theta +\cos \theta )^3 - 3\sin \theta \cos \theta (\sin \theta + \cos \theta ) \\ & = \left( \frac{1}{2} \right)^3 - 3 \times \left( -\frac{3}{8} \right) \times \left( \frac{1}{2} \right) \\ & = \frac{1}{8} + \frac{9}{16} \\ & = \frac{11}{16} \end{align*}$
Jadi, nilai $\sin ^3 \theta + \cos ^3 \theta = \frac{11}{16} . \heartsuit$
Nomor 9
Jika BC = 16, AC = 10, dan luas $\Delta$ABC = 40$\sqrt{3}$ , maka AB = ...
$\clubsuit \, $ gambar
snmptn_matdas_k201_2_2008.png
$\clubsuit \, $ Luas segitiga
$\begin{align*} \text{Luas}\Delta ABC & = \frac{1}{2} .CA.CB.\sin C \\ 40\sqrt{3} & = \frac{1}{2} .10.16.\sin C \\ \sin C & = \frac{1}{2} \sqrt{3} \\ C & = 60 ^o \\ \cos C & = \cos 60^o = \frac{1}{2} \end{align*}$
$\clubsuit \, $ Aturan cosinus untuk AB
$\begin{align*} AB^2 & = CA^2 + CB^2 - 2 . CA . CB \cos C \\ & = 10^2 + 16^2 - 2 \times 10 \times 16 \times \frac{1}{2} \\ & = 100+256-160 \\ AB^2 & = 196 \\ AB & = \sqrt{196}+14 \end{align*}$
Jadi, panjang AB = 14. $\heartsuit $
Nomor 10
$\displaystyle \lim_{x \to \frac{1}{4}\pi} \frac{1-2\sin x \cos x}{\sin x - \cos x} = ...$
$\spadesuit \, $ Rumus dasar (identitas trigonometri) : $\sin ^2 x + \cos ^2 x = 1 $
$\begin{align} 1-2\sin x \cos x & = [\sin ^2 x + \cos ^2 x] - 2\sin x \cos x \\ & = \sin ^2 x - 2\sin x \cos x + \cos ^2 x \\ & = ( \sin x - \cos x )^2 \end{align}$
$\spadesuit \, $ Menentukan limitnya :
$\begin{align} \displaystyle \lim_{x \to \frac{1}{4}\pi} \frac{1-2\sin x \cos x}{\sin x - \cos x} & = \displaystyle \lim_{x \to \frac{1}{4}\pi} \frac{ ( \sin x - \cos x )^2 }{\sin x - \cos x} \\ & = \displaystyle \lim_{x \to \frac{1}{4}\pi} \sin x - \cos x \\ & = \sin \frac{1}{4}\pi - \cos \frac{1}{4}\pi \\ & = \frac{1}{2}\sqrt{2} - \frac{1}{2}\sqrt{2} = 0 \end{align}$
Jadi, nilai $\displaystyle \lim_{x \to \frac{1}{4}\pi} \frac{1-2\sin x \cos x}{\sin x - \cos x} = 0 . \heartsuit $

Cara II (Menggunakan turunan)
$\spadesuit \, $ Rumus dasar : $\sin 2x = 2 \sin x \cos x $
$ y = \sin 2x \rightarrow y^\prime = 2\cos 2x $
$ y = \sin x \rightarrow y^\prime = \cos x $
$ y = \cos x \rightarrow y^\prime = - \sin x $
$\spadesuit \, $ Konsep limit dengan turunan :
$ \displaystyle \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0} \rightarrow \displaystyle \lim_{x \to a} \frac{f(x)}{g(x)} = \displaystyle \lim_{x \to a} \frac{f^\prime (x)}{g^\prime (x)} $
$\spadesuit \, $ Menentukan limitnya dengan turunan
$\begin{align} \displaystyle \lim_{x \to \frac{1}{4}\pi} \frac{1-2\sin x \cos x}{\sin x - \cos x} & = \displaystyle \lim_{x \to \frac{1}{4}\pi} \frac{ 1- \sin 2x }{\sin x - \cos x} \, \, \, \text{(diturunkan)} \\ & = \displaystyle \lim_{x \to \frac{1}{4}\pi} \frac{ 0- 2 \cos 2x }{\cos x - ( - \sin x )} \\ & = \displaystyle \lim_{x \to \frac{1}{4}\pi} \frac{ 2 \cos 2x }{\cos x + \sin x } \\ & = \frac{ 2 \cos ( 2\times \frac{1}{4}\pi ) }{\cos \frac{1}{4}\pi + \sin \frac{1}{4}\pi } \\ & = \frac{0}{\frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2}} = 0 \end{align}$
Jadi, nilai $\displaystyle \lim_{x \to \frac{1}{4}\pi} \frac{1-2\sin x \cos x}{\sin x - \cos x} = 0 . \heartsuit $
Nomor Soal Lainnya : 1-5 6-10 11-15 16-20 21-25

Tidak ada komentar:

Posting Komentar