Pembahasan Peluang Soal UM UGM Matematika Dasar tahun 2016 Kode 571

Soal yang Akan Dibahas
Enam siswa putra dan lima siswa putri duduk berdampingan dalam satu baris. Peluang bahwa di kursi paling tepi (di kedua ujung) diduduki oleh siswa putra adalah ....
A). $ \frac{1}{11} \, $ B). $ \frac{2}{11} \, $ C). $ \frac{3}{11} \, $ D). $ \frac{4}{11} \, $ E). $ \frac{6}{11} $

$\heartsuit $ Logika Berpikir
         Untuk menyelesaikan soal Peluang UM UGM matematika dasar tahun 2016 kode 571 ini membutuhkan pemahaman konsep peluang secara mendalam. Sebenarnya untuk penghitungan peluangnya tidaklah sulit, karena peluang itu hanyalah hasil pembagian saja antara $n(A)$ dan $n(S)$. Dalam menghitung banyaknya susunan duduk, URUTAN sangat diperhatikan. Sehingga pada pembahasan soal peluang ini akan melibatkan materi PERMUTASI.

$\spadesuit $ Konsep Dasar Peluang
Peluang kejadian A disimbolkan P(A) dengan rumus : $P(A) = \frac{n(A)}{n(S)} $ .
Keterangan :
$n(A) $ = banyak kejadian yang diharapkan.
$n(S)$ = ruang sampel atau semua kejadia yang mungkin.

*). Untuk kejadian yang memperhatikan URUTAN, banyak caranya menggunakan konsep PERMUTASI dengan rumus : $P_r^n = \frac{n!}{(n-r)!} $ .

*). Nilai $ n! = n\times (n-1)\times (n-2)\times ...\times 3\times 2\times 1$
Contoh :
$ 3! = 3\times 2\times 1 = 6 $
$ 5! = 5\times 4\times 3\times 2\times 1 = 120 $
$0! = 1 $.

$\clubsuit $ Pembahasan
*). Mennetukan $n(S)$ :
Ada 6 Pria dan 5 Wanita duduk berdampingan, sehingga semua kemungkinana banyaknya cara duduk ada :
$ n(S) = P_{11}^{11} = \frac{11!}{(11-11)!} = \frac{11!}{0!} = \frac{11!}{1} = 11! $.

*). Menentukan nilai $n(A) $ dengan A adalah kejadian ujung-ujung diisi oleh pria :
i). Banyak cara mengisi ujung-ujung adalah kita memilih dua pria dari 6 pria yang ada untuk kita tempatkan di ujung-ujung dengan banyak cara :
$P_2^6 = \frac{6!}{(6-2)!} = \frac{6!}{4!} = \frac{6\times 5 \times 4!}{4!} = 6 \times 5 = 30 $.
ii). 9 tempat duduk yang ditengah bebas diisi oleh 4 pria dan 5 wanita yang tersisa (9 orang) dengan banyak cara :
$ P_9^9 = \frac{9!}{(9-9)!} = \frac{9!}{0!} = 9! $.
iii). Sehingga total kemungkinan duduk agar ujung-ujung diisi oleh pria yaitu :
$ n(A) = 30 \times 9! $.

*). Menentukan peluang kejadian A :
$ P(A) = \frac{n(A)}{n(S)} = \frac{30 \times 9!}{11!} = \frac{30 \times 9!}{11\times 10 \times 9!} = \frac{3}{11} $ .
Jadi, peluangnya adalah $ \frac{3}{11} . \, \heartsuit $
$\spadesuit $ Catatan
         Untuk lancar dalam mengerjakan soal-soal peluang, sebaiknya teman-teman menguasai materi kombinatorik terlebih dahulu yaitu kaidah pencacahan (aturan penjumlahan dan perkalian), permutasi, dan kombinasi.



3 komentar:

  1. Hallo Pak Putu.

    pak di soal kan enam siswa dan 5 siswi duduk berdampingan atau dalam kata lain berpasangan. Jadi kalau begitu, menurut saya yang di posisi selain di ujung itu ga boleh bebas, harus berdampingan.

    p=pria (siswa)
    w=wanita (siswi)

    P 1 2 3 4 5 6 7 8 9 P
    6 5

    yang posisi di 1-9 adalah:

    w p w p w p w p w
    5 4 4 3 3 2 2 1 1

    Maka n(K) = 6 x 5 x 5! x 4!= 6 ! x 5 !

    n(S) nya itu juga berarti bukan banyak duduk siswa dan siswi secara bebas, melainkan banyak duduk siswa dan siswi berpasangan tanpa memikirkan kedua ujung adalah siswa. Maka susunan yang mungkin adalah:

    p w p w p w p w p w p
    p p w p w p w p w p w
    w p p w p w p w p w p
    p w p p w p w p w p w
    w p w p p w p w p w p
    p w p w p p w p w p w
    w p w p w p p w p w p
    p w p w p w p p w p w
    w p w p w p w p p w p
    p w p w p w p w p p w
    w p w p w p w p w p p
    5 6 4 5 3 4 2 3 1 2 1

    n(S) = 11 posisi siswa dan siswi yang mungkin x 6 ! x 5! = 11 x 6! x5!

    P(K) = n(k)/n(S)= (6! x 5!)/ (11 x 6! x 5!) = 1 / 11 ( option A)

    Jawaban dan cara saya seperti itu Pak. Mohon pencerahannya Pak Putu. Terimakasih banyak

    BalasHapus
  2. Oh iya Pak , kalo saya boleh simpulkan,menurut saya perbedaan cara dan jawaban saya dengan bapak, itu karena penafsiran kata BERDAMPINGAN yang berbeda. Saya menafsirkan berdampingan artinya adalah berpasangan atau bersebelahan.

    BalasHapus
  3. Hallow @bobbi,

    Terimakasih untuk kunjungannya dan pertanyaannya ke blog dunia informa.

    kata "BERDAMPINGAN" disini maksudnya adalah duduk secara bebas berjajar kesamping tanpa memperhatikan urutan.

    Jika yang dimaksud selang-seling seperti @bobbi jabarkan di atas, maka pasti akan ada kata "dua laki-laki dan dua wanita tidak boleh duduk berdekatan".

    Catatan lain :
    untuk $ n(S) $ itu menyatakan semua kemungkinan susunan duduk sehingga selalu tidak ada syarat, jadi intinya ada 11 orang duduk sehingga $ n(S) = 11! $.

    Seperti itu penjelasannya.

    semoga bisa membantu.

    BalasHapus