Soal dan Pembahasan SBMPTN Kode 347 Matematika Dasar tahun 2016


Nomor 1
Misalkan $ m $ dan $ n $ adalah bilangan bulat dan merupakan akar-akar persamaan $ x^2 + ax - 30 = 0 $ , maka nilai $ a $ agar $ m + n $ maksimum adalah ....
A). $ 30 \, $ B). $ 29 \, $ C). $ 13 \, $ D). $ -29 \, $ E). $ -31 $
Nomor 2
Jika $ A^{2x} = 2 $, maka $ \frac{A^{5x} - A^{-5x}}{A^{3x} + A^{-3x} } = .... $
A). $\frac{31}{18} \, $ B). $\frac{31}{9} \, $ C). $ \frac{32}{18} \, $ D). $ \frac{33}{9} \, $ E). $ \frac{33}{18} $
Nomor 3
Suatu garis yang melalui titik $(0,0)$ membagi persegipanjang dengan titik-titik sudut (1,2), (5,0), (1,12), dan (5,12) menjadi dua bagian yang sama luas. Gradien garis tersebut adalah ....
A). $ \frac{1}{2} \, $ B). $ 1 \, $ C). $ 2 \, $ D). $ \frac{12}{5} \, $ E). $ 3 $
Nomor 4
Semua nilai $ x $ yang memenuhi $ \frac{3}{x} - \frac{3}{x+3} \geq 0 \, $ adalah ....
A). $ x < 0 \, $ B). $ -3 \leq x \leq 0 \, $ C). $ -3 < x < 0 \, $
D). $ x < -3 \, $ atau $ x > 0 \, $ E). $ x \leq -3 \, $ atau $ x \geq 0 \, $
Nomor 5
Jika grafik fungsi $ y = x^2 - (9+a)x + 9a \, $ diperoleh dari grafik fungsi $ y = x^2 - 2x - 3 \, $ melalui pencerminan terhadap garis $ x = 4 $ , maka $ a = .... $
A). $ 7 \, $ B). $ 5 \, $ C). $ 3 \, $ D). $ -5 \, $ E). $ -7 \, $

Nomor 6
Tujuh finalis lomba menyanyi tingkat SMA di suatu kota berasal dari 6 SMA yang berbeda terdiri atas empat pria dan tiga wanita. Diketahui satu pria dan satu wanita berasal dari SMA "A". Jika urutan tampil diatur bergantian antara pria dan wanita, serta finalis dari SMA "A" tidak tampil berurutan, maka susunan urutan tampil yang mungkin ada sebanyak ....
A). $ 144 \, $ B). $ 108 \, $ C). $ 72 \, $ D). $ 36 \, $ E). $ 35 $
Nomor 7
Jika $ f(x) = x + 2a - b \, $ dan $ g(x) = 2bx + 2 $, serta $ 4f(0) = 3g(1) $ , maka $ 4a - 5b = .... $
A). $ 3 \, $ B). $ 1 \, $ C). $ 0 \, $ D). $ -1 \, $ E). $ -3 $

Nomor 8
Jika fungsi $ f $ dan $ g $ mempunyai invers dan memenuhi $ f(x + 2) = g(x-3) $, maka $ f^{-1}(x) = .... $
A). $ g^{-1}(x) + 5 \, $ B). $ g^{-1}(x + 5) \, $
C). $ g^{-1}(5x) \, $ D). $ g^{-1}(x-5) \, $
E). $ g^{-1}(x) - 5 $
Nomor 9
Jika $ \left( \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix} \right)B \left( \begin{matrix} 0 \\ 1 \end{matrix} \right) = \left( \begin{matrix} 1 \\ 2 \end{matrix} \right) $ dan $ \left( \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix} \right)B \left( \begin{matrix} 1 \\ 0 \end{matrix} \right) = \left( \begin{matrix} 2 \\ 1 \end{matrix} \right) $ , maka $ B \left( \begin{matrix} -1 \\ 1 \end{matrix} \right) = .... $
A). $ \left( \begin{matrix} -1 \\ 0 \end{matrix} \right) \, $ B). $ \left( \begin{matrix} -1 \\ 1 \end{matrix} \right) \, $
C). $ \left( \begin{matrix} 1 \\ -2 \end{matrix} \right) \, $ D). $ \left( \begin{matrix} -2 \\ 1 \end{matrix} \right) \, $
E). $ \left( \begin{matrix} -2 \\ 2 \end{matrix} \right) $
Nomor 10
Pada suatu barisan aritmetika dengan suku-suku berbeda, jumlah suku ke-1, ke-3, dan ke-5 sama dengan jumlah suku ke-2 dan ke-4. Jika suku ke-10 sama dengan kuadrat suku ke-4, maka suku ke-13 adalah ....
A). $ 0 \, $ B). $ 7 \, $ C). $ 10 \, $ D). $ 70 \, $ E). $ 91 $

Nomor 11
Titik X, Y, Z terletak pada segitiga ABC dengan $ AZ = AY, \, $ $ BZ = BX, \, $ dan $ CX = CY \, $ seperti pada gambar. Jika AB, AC, dan BC berturut-turut adalah 4 cm, 3 cm, dan 5 cm, maka luas segitiga CXY adalah .... cm$^2$.
A). $ \frac{6}{5} \, $ B). $ \frac{8}{5} \, $ C). $ \sqrt{3} \, $ D). $ 2\sqrt{3} \, $ E). $ 4 $
Nomor 12
Jangkauan dan rata-rata nilai ujian 6 siswa berturut-turut adalah 10 dan 6. Jika median data tersebut adalah 6 dan selisih kuatil ke-1 dan ke-3 adalah 6, maka jumlah dua nilai ujian terendah adalah ....
A). $ 2 \, $ B). $ 4 \, $ C). $ 5 \, $ D). $ 6 \, $ E). $ 8 $
Nomor 13
Diketahui $ f(x) = ax^2 + b $. Jika $ f(2b) - f(b) = 3 $, dan $ \displaystyle \lim_{x \to 1} \frac{f(bx)}{x-1} = 2 $, maka $ a + b = .... $
A). $ -2 \, $ B). $ -1 \, $ C). $ 0 \, $ D). $ 1 \, $
E). $ 2 $
Nomor 14
Jika $ 2x + 3y = 12, \, 3x - 2y = 5, \, $ $ ax + by = 16 $ , dan $ ax - by = 8 $, maka $ a - b = .... $
A). $ -6 \, $ B). $ -2 \, $ C). $ 0 \, $ D). $ 2 \, $ E). $ 6 $
Nomor 15
Semua bilangan real $ x $ yang memenuhi $ x - 1 < \frac{2}{|x|} \, $ adalah ....
A). $ x < 1 \, $ B). $ x < 0 \, $ C). $ x > 0 \, $
D). $ x < 0 \, $ atau $ 0 < x < 2 \, $
E). $ -1 < x < 0 \, $ atau $ 0 < x < 2 \, $


Tidak ada komentar:

Posting Komentar