Soal yang Akan Dibahas
Jika $ b = a^3 $ dengan $ a $ dan $ b $ bilangan bulat positif, maka nilai
$ {}^a \log b + {}^b \log a = .... $
A). $ 0 \, $ B). $ 1 \, $ C). $ \frac{8}{3} \, $ D). $ \frac{10}{3} \, $ E). $ 6 \, $
A). $ 0 \, $ B). $ 1 \, $ C). $ \frac{8}{3} \, $ D). $ \frac{10}{3} \, $ E). $ 6 \, $
$\spadesuit $ Konsep Dasar
*). Sifat logaritma :
$ {}^{a^m} \log b^n = \frac{n}{m} \, {}^a \log b $
$ {}^a \log b^n = n. {}^a \log b $
*). Sifat logaritma :
$ {}^{a^m} \log b^n = \frac{n}{m} \, {}^a \log b $
$ {}^a \log b^n = n. {}^a \log b $
$\clubsuit $ Pembahasan
*). Menyelesaikan soal dengan substitusi $ b = a^3 $ :
$\begin{align} {}^a \log b + {}^b \log a & = {}^a \log a^3 + {}^{a^3} \log a \\ & = 3. {}^a \log a + \frac{1}{3} . {}^{a} \log a \\ & = 3. 1 + \frac{1}{3} . 1 \\ & = 3 + \frac{1}{3} \\ & = \frac{9}{3} + \frac{1}{3} = \frac{10}{3} \end{align} $
Jadi, nilai $ {}^a \log b + {}^b \log a = \frac{10}{3} . \, \heartsuit $
*). Menyelesaikan soal dengan substitusi $ b = a^3 $ :
$\begin{align} {}^a \log b + {}^b \log a & = {}^a \log a^3 + {}^{a^3} \log a \\ & = 3. {}^a \log a + \frac{1}{3} . {}^{a} \log a \\ & = 3. 1 + \frac{1}{3} . 1 \\ & = 3 + \frac{1}{3} \\ & = \frac{9}{3} + \frac{1}{3} = \frac{10}{3} \end{align} $
Jadi, nilai $ {}^a \log b + {}^b \log a = \frac{10}{3} . \, \heartsuit $
Tidak ada komentar:
Posting Komentar
Catatan: Hanya anggota dari blog ini yang dapat mengirim komentar.