Soal yang Akan Dibahas
Diberikan persamaan $ 2\sin ^3 x - \cos ^2x - 2\sin x = 0 $ ,
$ 0 \leq x \leq \frac{3\pi}{2} $ . Jika $ x_1 $ penyelesaian terkecil dan $ x_2 $
penyelesaian terbesar dari persamaan tersebut, maka $ x_2 - x_1 = ...$
A). $ \frac{\pi}{3} \, $ B). $ \frac{2\pi}{3} \, $ C). $ \pi \, $ D). $ \frac{4\pi}{3} \, $ E). $ \frac{5\pi}{3} $
A). $ \frac{\pi}{3} \, $ B). $ \frac{2\pi}{3} \, $ C). $ \pi \, $ D). $ \frac{4\pi}{3} \, $ E). $ \frac{5\pi}{3} $
$\spadesuit $ Konsep Dasar
*). Identitas trigonometri :
$ \sin ^2 x + \cos ^2 x = 1 \rightarrow \cos ^2 x = 1 - \sin ^2 x $
*). Pemfaktoran :
$ a^2 - b^2 = (a+b)(a-b) $
*). Sifat distributif :
$ ab - b = b(a-1) $
*). Identitas trigonometri :
$ \sin ^2 x + \cos ^2 x = 1 \rightarrow \cos ^2 x = 1 - \sin ^2 x $
*). Pemfaktoran :
$ a^2 - b^2 = (a+b)(a-b) $
*). Sifat distributif :
$ ab - b = b(a-1) $
$\clubsuit $ Pembahasan
*). Menyelesaikan persamaan trigonometrinya :
$\begin{align} 2\sin ^3 x - \cos ^2x - 2\sin x & = 0 \\ 2\sin ^3 x - (1 - \sin ^2x) - 2\sin x & = 0 \\ 2\sin ^3 x - 1 + \sin ^2x - 2\sin x & = 0 \\ 2\sin ^3 x + \sin ^2x - 2\sin x - 1 & = 0 \\ (2\sin ^3 x + \sin ^2x) - (2\sin x + 1) & = 0 \\ \sin ^2x( 2\sin x + 1) - (2\sin x + 1) & = 0 \\ ( 2\sin x + 1) (\sin ^2x - 1) & = 0 \\ ( 2\sin x + 1) (\sin x + 1) (\sin x - 1) & = 0 \\ ( 2\sin x + 1) = 0 \vee (\sin x + 1) = 0 \vee (\sin x - 1) & = 0 \\ \sin x = -\frac{1}{2} \vee \sin x = -1 \vee \sin x & = 1 \end{align} $
*). Menentukan nilai $ x $ pada interval $ 0 \leq x \leq \frac{3\pi}{2} $ :
$\begin{align} \sin x & = -\frac{1}{2} \rightarrow x = 210^\circ = \frac{7\pi}{6} \\ \sin x & = -1 \rightarrow x = 270^\circ = \frac{3\pi}{2} \\ \sin x & = 1 \rightarrow x = 90^\circ = \frac{\pi}{2} \\ \end{align} $
Sehingga $ x_1 = \frac{\pi}{2} \, $ (terkecil) dan $ x_2 = \frac{3\pi}{2} \, $ (terbesar).
Nilai $ x_2 - x_1 = \frac{3\pi}{2} - \frac{\pi}{2} = \frac{2\pi}{2} = \pi $
Jadi, nilai $ x_2 - x_1 = \pi . \, \heartsuit $
*). Menyelesaikan persamaan trigonometrinya :
$\begin{align} 2\sin ^3 x - \cos ^2x - 2\sin x & = 0 \\ 2\sin ^3 x - (1 - \sin ^2x) - 2\sin x & = 0 \\ 2\sin ^3 x - 1 + \sin ^2x - 2\sin x & = 0 \\ 2\sin ^3 x + \sin ^2x - 2\sin x - 1 & = 0 \\ (2\sin ^3 x + \sin ^2x) - (2\sin x + 1) & = 0 \\ \sin ^2x( 2\sin x + 1) - (2\sin x + 1) & = 0 \\ ( 2\sin x + 1) (\sin ^2x - 1) & = 0 \\ ( 2\sin x + 1) (\sin x + 1) (\sin x - 1) & = 0 \\ ( 2\sin x + 1) = 0 \vee (\sin x + 1) = 0 \vee (\sin x - 1) & = 0 \\ \sin x = -\frac{1}{2} \vee \sin x = -1 \vee \sin x & = 1 \end{align} $
*). Menentukan nilai $ x $ pada interval $ 0 \leq x \leq \frac{3\pi}{2} $ :
$\begin{align} \sin x & = -\frac{1}{2} \rightarrow x = 210^\circ = \frac{7\pi}{6} \\ \sin x & = -1 \rightarrow x = 270^\circ = \frac{3\pi}{2} \\ \sin x & = 1 \rightarrow x = 90^\circ = \frac{\pi}{2} \\ \end{align} $
Sehingga $ x_1 = \frac{\pi}{2} \, $ (terkecil) dan $ x_2 = \frac{3\pi}{2} \, $ (terbesar).
Nilai $ x_2 - x_1 = \frac{3\pi}{2} - \frac{\pi}{2} = \frac{2\pi}{2} = \pi $
Jadi, nilai $ x_2 - x_1 = \pi . \, \heartsuit $
Tidak ada komentar:
Posting Komentar
Catatan: Hanya anggota dari blog ini yang dapat mengirim komentar.