Soal dan Pembahasan SBMPTN 2017 Matematika IPA Kode 135


Nomor 1
Jika
$ \left\{ \begin{array}{c} \frac{2}{x + y} - \frac{1}{x - y} = \frac{3}{4} \\ \frac{1}{x + y} + \frac{2}{x - y} = 1 \\ \end{array} \right. $
maka $ x + y = .... $
A). $ 1 \, $ B). $ 2 \, $ C). $ 3 \, $ D). $ 4 \, $ E). $ 5 $
Nomor 2
Seorang pelajar berencana untuk menabung di koperasi yang keuntungannya dihitung setiap semester. Apabila jumlah tabungan menjadi dua kali lipat dalam 5 tahun, maka besar tingkat suku bunga per tahun adalah ....
A). $ 2(\sqrt[10]{2}-1) \, $ B). $ 2(\sqrt[5]{2}-1) \, $
C). $2(\sqrt{2}) \, $ D). $ 2(\sqrt[5]{2}) \, $ E). $ 2(\sqrt[10]{2} ) $
Nomor 3
Hasil penjumlahan semua bilangan bulat $ a $ yang lebih besar dari $ -10 $ dan memenuhi $ \frac{a - |a - 2|}{a} > 2 $ adalah .....
A). $ -21 \, $ B). $ -28 \, $ C). $ -36 \, $ D). $ -45 \, $ E). $ -55 $
Nomor 4
Diketahui $ \vec{a} $ dan $ \vec{b} $ vektor-vektor pada bidang datar sehingga $ \vec{a} $ tegak lurus $ \vec{a} + \vec{b} $. Jika $ |\vec{a}|:|\vec{b}| = 1 : 2 $ , maka besar sudut antara $ \vec{a} $ dan $ \vec{b} $ adalah .....
A). $ 30^\circ \, $ B). $ 45^\circ \, $ C). $ 60^\circ \, $ D). $ 120^\circ \, $ E). $ 150^\circ \, $
Nomor 5
Jika $ x_1 $ dan $ x_2 $ memenuhi $ 2\sin x + \sec x - 2\tan x - 1 = 0 $ , maka nilai $ \sin x_1 + \cos x_2 \, $ yang mungkin adalah .....
A). $ \frac{4}{5} \, $ B). $ \frac{3}{4} \, $ C). $ \frac{4}{3} \, $ D). $ \frac{3}{2} \, $ E). $ 2 \, $

Nomor 6
Persamaan hiperbola yang mempunyai asimtot $ y = 2x $ dan $ y = 4 - 2x $, serta melalui $ (3,0) $ adalah .....
A). $ (x-1)^2 - 4 (y + 2)^2 = 4 \, $
B). $ (x-1)^2 - 4(y - 2)^2 = 12 \, $
C). $ 4(x-1)^2 - (y - 2)^2 = 4 \, $
D). $ 4(x-1)^2 - (y - 2)^2 = 12 \, $
E). $ 4(x-1)^2 - (y + 2)^2 = 12 $
Nomor 7
Misalkan
$ f(x) = 3x^3 -9x^2+4bx + 18 = (x-2)g(x) + 2b $
maka $ g(-2) = ...... $
A). $ 12 \, $ B). $ 10 \, $ C). $ 8 \, $ D). $ 6 \, $ E). $ 4 $
Nomor 8
Diketahui suatu lingkaran kecil dengan radius $ 3\sqrt{2} $ melaui pusat suatu lingkaran besar yang mempunyai radius 6. Ruas garis yang menghubungkan dua titik potong lingkaran merupakan diameter dari lingkaran kecil, seperti pada gambar. Luas daerah irisan kedua lingkaran adalah ....
A). $ 18\pi + 18 \, $ B). $ 18\pi - 18 \, $
C). $ 14\pi + 14 \, $ D). $ 14\pi - 15 \, $
E). $ 10\pi + 10 $
Nomor 9
Jika $ \int_{-4}^4 f(x) (\sin x + 1) dx = 8 $ , dengan $ f(x) $ fungsi genap dan $ \int_{-2}^4 f(x) dx = 4 $ , maka $ \int_{-2}^0 f(x) dx = .... $
A). $ 0 \, $ B). $ 1 \, $ C). $ 2 \, $ D). $ 3 \, $ E). $ 4 $
Nomor 10
$ \displaystyle \lim_{x \to 0} \frac{x + x \cos x}{\sin x \cos x} = .... $
A). $ 0 \, $ B). $ 1 \, $ C). $ 2 \, $ D). $ 3 \, $ E). $ 4 $

Nomor 11
$ \displaystyle \lim_{x \to \infty } \, x \cot \left( \frac{1}{x} \right) \sin \left( \frac{1}{x^2} \right) = .... $
A). $ -2 \, $ B). $ -1 \, $ C). $ 0 \, $ D). $ 1 \, $ E). $ 2 $
Nomor 12
Jika kurva $ y = \frac{(x^2+2bx+b^2)(x-a)}{(x^2-a^2)(x^2+2)} $ , dengan $ a \neq 0 $, tidak mempunyai asimtot tegak, maka kurva $ y=\frac{(a+2b)x^2-7a}{(a-2b)x^2+7b} $ mempunyai asimtot datar ......
A). $ y = 6 \, $ B). $ y = 3 \, $ C). $ y = 2 \, $
D). $ y = -3 \, $ E). $ y = -5 $
Nomor 13
Misalkan $ f(x) = 2\tan \left( \sqrt{\sec x} \right) $ , maka $ f^\prime (x) = .... $
A). $ \sec ^2 \left( \sqrt{\sec x} \right) . \tan x \, $
B). $ \sec ^2 \left( \sqrt{\sec x} \right) . \sqrt{\sec x}. \tan x \, $
C). $ 2\sec ^2 \left( \sqrt{\sec x} \right) . \sqrt{\sec x} . \tan x \, $
D). $ \sec ^2 \left( \sqrt{\sec x} \right) . \sec x . \tan x \, $
E). $ 2\sec ^2 \left( \sqrt{\sec x} \right) . \sec x . \tan x $
Nomor 14
Garis singgung dari $ f(x) = \frac{1}{x^2 \cos x} $ di titik $ x = \pi $ memotong garis $ y = x + c $ di titik $(\pi, 0 )$. Nili $ c $ adalah ....
A). $ -\frac{1}{4}\pi \, $ B). $ -\frac{1}{2}\pi \, $ C). $ -\pi \, $ D). $ \frac{1}{2}\pi \, $ E). $ \pi \, $
Nomor 15
Di dalam kotak I terdapat 12 bola putih dan 3 bola merah. Di dalam kotak II terdapat 4 bola putih dan 4 bola merah. Jika dari kotak I dan kotak II masing-masing diambil 2 bola satu per satu dengan pengembalia, maka peluang yang terambil adalah 1 bola merah adalah .....
A). $ 0,04 \, $ B). $ 0,10 \, $ C). $ 0,16 \, $ D). $ 0,32 \, $ E). $ 0,40 $

Tidak ada komentar:

Posting Komentar

Catatan: Hanya anggota dari blog ini yang dapat mengirim komentar.