Pembahasan Trigonometri Simak UI 2009 Matematika Dasar kode 931

Soal yang Akan Dibahas
Pada gambar di atas, O adalah pusat lingkaran. Jika $ PQ = 5 $ dan $ OP = 3 $, maka $ \cos ( \pi + \alpha ) = ...... $
A). $ -\frac{7}{18} \, $ B). $ -\frac{7}{9} \, $ C). $ \frac{7}{18} \, $ D). $ \frac{7}{15} \, $ E). $ \frac{7}{9} $

$\spadesuit $ Konsep Dasar
*). Aturan kosinus pada segitiga :
$ a^2 = b^2 + c^2 - 2bc \cos A \rightarrow \cos A = \frac{b^2 + c^2 - a^2}{2bc} $
*). Hubungan kuadran :
$ \cos (\pi + x) = -\cos x $

$\clubsuit $ Pembahasan
*). Menentukan nilai $ \cos (\pi + \alpha) $ pada segitiga POQ :
$ \begin{align} \cos (\pi + \alpha) & = - \cos \alpha \\ & = -\cos \angle POQ \\ & = -\frac{OP^2 + OQ^2 - PQ^2}{2.OP.OQ} \\ & = -\frac{3^2 + 3^2 - 5^2}{2.3.3} \\ & = -\frac{9 + 9 - 25}{18} \\ & = -\frac{-7}{18} = \frac{7}{18} \end{align} $
Jadi, nilai $ \cos (\pi + \alpha) = \frac{7}{18} . \, \heartsuit $

Tidak ada komentar:

Posting Komentar