Pembahasan Persamaan Mutlak UM UGM 2019 Matematika Ipa Kode 624

Soal yang Akan Dibahas
Banyaknya bilangan real $ x $ yang memenuhi persamaan $ |x^2-4|=x+|x-2| $ adalah ....
A). $ 0 \, $ B). $ 1 \, $ C). $ 2 \, $ D). $ 3 \, $ E). $ 4 $

$\spadesuit $ Konsep Dasar
*). Definisi nilai mutlak :
$ |f(x)| = \left\{ \begin{array}{cc} f(x) & \text{untuk } f(x) \geq 0 \\ -f(x) & \text{untuk } f(x) < 0 \end{array} \right. $
*). Untuk menyelesaikan persamaan nilai mutlak, kita hilangkan dulu tanda mutlaknya dengan definisi nilai mutlak di atas.
*). Persamaan kuadrat : $ ax^2 + bx + c = 0 $
Rumus ABC : $ x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $

$\clubsuit $ Pembahasan
*). DIketahui persamaan : $ |x^2-4|=x+|x-2| $
*). Definisi nilai mutlak :
-). Pertama untuk $ |x-2| $
$ x - 2 $ positif untuk $ x - 2 \geq 0 \rightarrow x \geq 0 $
$ x - 2 $ negatif untuk $ x - 2 < 0 \rightarrow x < 2 $
$ |x-2| = \left\{ \begin{array}{cc} x-2 & \text{untuk } x \geq 2 \\ -(x-2) & \text{untuk } x < 2 \end{array} \right. $
-). Kedua untuk $ |x^2-4| $ :
$ x^2-4 $ positif untuk $ x^2-4\geq 0 \rightarrow x \leq -2 \vee x \geq 0 $
$ x^2-4 $ negatif untuk $ x^2-4 < 0 \rightarrow -2 < x < 2 $
$ |x^2-4| = \left\{ \begin{array}{cc} x^2-4 & \text{untuk } x \leq -2 \vee x \geq 2 \\ -(x^2-4) & \text{untuk } -2 < x < 2 \end{array} \right. $
*). Sesuai dengan definisi di atas, bentuk mutlaknya dibatasi oleh $ x = -2 $ dan $ x = 2 $. Artinya terbentuk tiga kemungkinan (daerah) nilai $ x $ yaitu
Daerah I: $ x < -2 $
$ |x - 2 | = -(x-2) = -x + 2 $ dan $ |x^2-4| = x^2-4 $
Daerah II : $ -2 \leq x < 2 $
$ |x - 2 | = -(x-2) = -x + 2 $ dan $ |x^2-4| = -(x^2-4) = -x^2+4 $
Daerah III : $ x \geq 2 $
$ |x - 2 | = x-2 $ dan $ |x^2-4| = x^2-4 $
*). Menyelesaikan $ |x^2-4|=x+|x-2| $ berdasarkan nilai $ x $ (daerah $x$) :
-). Daerah I: $ x < -2 $
$\begin{align} |x^2-4|& =x+|x-2| \\ x^2-4 & =x+ (-x+2) \\ x^2 & = 6 \\ x & = \pm \sqrt{6} \end{align} $
Karena daerah I $ x < -2 $ , maka $ x_1 = -\sqrt{6} $ yang memenuhi.
-). Daerah II: $ -2 \leq x < 2 $
$\begin{align} |x^2-4|& =x+|x-2| \\ -x^2+4 & =x+ (-x+2) \\ x^2 & = 2 \\ x & = \sqrt{2} \end{align} $
$ x_2 = -\sqrt{2} \, $ dan $ x_3 = \sqrt{2} $ memenuhi daerah II.
-). Daerah III : $ x \geq 2 $
$\begin{align} |x^2-4|& =x+|x-2| \\ x^2-4 & =x+ x - 2 \\ x^2 - 2x - 2 & = 0 \end{align} $
Dengan Rumus ABC :
$\begin{align} x & = \frac{-(-2) \pm \sqrt{(-2)^2 - 4.1.(-2)}}{2.1} \\ & = \frac{2 \pm \sqrt{12}}{2} \\ & = \frac{2 \pm 2\sqrt{3}}{2} \\ & = 1 \pm \sqrt{3} \end{align} $
Karena daerah III $ x \geq 2 $ , maka $ x_4 = 1 + \sqrt{3} $ yang memenuhi.
Sehingga himpunan penyelesaiannya yaitu :
Hp $ = \{ -\sqrt{6}, -\sqrt{2} , \sqrt{2} , 1 +\sqrt{3} \} $
Artinya ada 4 nilai $ x $ yang memenuhi.
Jadi, ada 4 solusi nilai $ x . \, \heartsuit $

Tidak ada komentar:

Posting Komentar