Pembahasan Suku Banyak UM UGM 2019 Matematika Ipa Kode 624

Soal yang Akan Dibahas
Suku banyak $ p(x) $ bersisa 2 jika dibagi $ x - 1 $ dan tak bersisa jika dibagi $ x+1 $. Suku banyak $ q(x) $ bersisa $ 2x $ jika dibagi $ x^2 - 1 $. Jika suku banyak $ p(x)+q(x) $ dibagi $ x^2 - 1 $ , maka sisanya adalah ....
A). $ 3x - 1 \, $ B). $ 3x + 1 \, $
C). $ -3x+2 \, $ D). $ -3x-2 \, $
E). $ 3x+2 $

$\spadesuit $ Konsep Dasar
*). Teorema SISA :
Misalkan ada suku banyak $ f(x) $ jika dibagi $ x + a $ bersisa b, maka dapat ditulis $ f(-a) = b $. (Substitusikan akar dari pembaginya dan hasilnya adalah sisanya).
*). Derajat sisa pembagian selalu lebih kecil dari derajat pembaginya.
Contoh:
$ f(x) = ax^3 + bx^2 + cx + d $ dibagi $ g(x) = px^2 + qx + r $ memberikan sisa $ mx + n $

$\clubsuit $ Pembahasan
*). Menyusun persamaan :
-). $ p(x) $ bersisa 2 jika dibagi $ x - 1 $ , akarnya $ x - 1 = 0 \rightarrow x = 1 $. Persamaannya $ p(1) = 2 $
-). $ p(x) $ tak bersisa (sisa = 0) jika dibagi $ x+1 $, akarnya $ x + 1 = 0 \rightarrow x = -1 $. Persamaannya $ p(-1) = 0 $
-). $ q(x) $ bersisa $ 2x $ jika dibagi $ x^2 - 1 $
akarnya : $ x^2 -1 = 0 \rightarrow (x+1)(x-1) = 0 \rightarrow x = - 1 \vee x = 1 $
$ x = -1 \rightarrow q(-1) = 2(-1) \rightarrow q(-1) = -2 $
$ x = 1 \rightarrow q(1) = 2(1) \rightarrow q(1) = 2 $
*). $ p(x) + q(x) $ dibagi $ x^2 - 1 $, kita misalkan sisanya $ s(x) = mx+n $.
Akar-akar pembaginya : $ x^2 - 1 = 0 \rightarrow x = -1 \vee x = 1 $
Substitusi akar-akar ke $ p(x) + q(x) $ dan sisa $ s(x) = mx + n $ :
$\begin{align} x = 1 \rightarrow p(1) + q(1) & = s(1) \\ 2 + 2 & = m. 1 + n \\ m + n & = 4 \, \, \, \, \text{...(i)} \\ x = -1 \rightarrow p(-1) + q(-1) & = s(-1) \\ 0 + (-2) & = m. (-1) + n \\ -m + n & = -2 \\ m & = n + 2 \, \, \, \, \text{...(ii)} \end{align} $
*). Substitusi pers(ii) ke (i) :
$\begin{align} m + n & = 4 \\ (n+2) + n & = 4 \\ 2n & = 2 \\ n & = 1 \end{align} $
Pers(ii): $ m = n + 2 = 1 + 2 = 3 $
Sehingga sisanya :
$ s(x) = mx + n = 3x + 1 $
Jadi, sisanya adalah $ 3x + 1 . \, \heartsuit $

Tidak ada komentar:

Posting Komentar