Soal dan Pembahasan SBMPTN 2017 Matematika IPA Kode 165


Nomor 1
Jika $(x,y) $ memenuhi sistem
$ \left\{ \begin{array}{c} \frac{2y}{x+1} - \frac{x}{y-1} = 1 \\ \frac{-3y}{x+1} + \frac{2x}{y-1} = -1 \\ \end{array} \right. $
maka $ \frac{xy-x+y-1}{2xy} = .... $
A). $ -\frac{1}{2} \, $ B). $ -\frac{1}{4} \, $ C). $ \frac{1}{4} \, $ D). $ \frac{1}{2} \, $ E). $ 2 $
Nomor 2
Seorang pelajar berencana untuk menabung di koperasi yang keuntungannya dihitung setiap semester. Apabila jumlah tabungan menjadi dua kali lipat dalam 5 tahun, maka besar tingkat suku bunga per tahun adalah ....
A). $ 2(\sqrt[10]{2}-1) \, $ B). $ 2(\sqrt[5]{2}-1) \, $
C). $2(\sqrt{2}) \, $ D). $ 2(\sqrt[5]{2}) \, $ E). $ 2(\sqrt[10]{2} ) $
Nomor 3
Banyak bilangan bulat $ x $ yang memenuhi pertidaksamaan $ \frac{(x+2)(x-2)}{(x+4)(x-4)} \leq 1 $ adalah ....
A). $ 3 \, $ B). $ 4 \, $ C). $ 5 \, $ D). $ 6 \, $ E). $ 7 $
Nomor 4
Diketahui vektor-vektor $ \vec{a} , \, \vec{b} , \, $ dan $ \vec{ c} $ dengan $ \vec{b} = (-2, \, 1) , \, \vec{b} \bot \vec{c} , \, $ dan $ \vec{a}-\vec{b}-\vec{c}=0$. Jika $|\vec{a}| = 5 $ dan sudut antara $ \vec{a} $ dan $ \vec{b} $ adlah $ \alpha $ , maka luas segitiga yang dibentuk ujung-ujung vektor $ \vec{a} , \vec{b}, $ dan $\vec{c} $ adalah ....
A). $ 5\sqrt{5} \, $ B). $ \frac{\sqrt{5}}{2} \, $ C). $ \frac{2}{\sqrt{5}} \, $ D). $ 5 \, $ E). $ 10 \, $
Nomor 5
Jika $ x_1 $ dan $ x_2 $ adalah solusi dari $ \frac{2\sin x . \cos 2x}{\cos x . \sin 2x} - 5\tan x + 5 = 0 $ , maka $ \tan (x_1 + x_2) = .... $
A). $ -\frac{5}{7} \, $ B). $ -\frac{5}{3} \, $ C). $ \frac{\sqrt{5}}{7} \, $ D). $ \frac{\sqrt{5}}{3} \, $ E). $ \frac{5}{3} \, $

Nomor 6
Jarak antara titik potong kedua asimtot dari hiperbola $ -\frac{x^2-2nx+n^2}{4}+\frac{y^2-4my+4m^2}{9} = 1 $ pada sumbu X adalah .....
A). $ \frac{2n}{3} \, $ B). $ \frac{4n}{3} \, $ C). $ \frac{2m}{3} \, $ D). $ \frac{4m}{3} \, $ E). $ \frac{8m}{3} $
Nomor 7
Sisa pembagian suatu polinom oleh $(x-3) $ adalah 4, sewdangkan sisa pembagiannya oleh $ (x^2 - 8x + 15) $ adalah $ (ax-5) $. Sisa pembagian polinom tersebut oleh $ (x-5) $ adalah ....
A). $ 1 \, $ B). $ 3 \, $ C). $ 5 \, $ D). $ 6 \, $ E). $ 10 $
Nomor 8
Diketahui suatu lingkaran kecil dengan radius $ 3\sqrt{2} $ melaui pusat suatu lingkaran besar yang mempunyai radius 6. Ruas garis yang menghubungkan dua titik potong lingkaran merupakan diameter dari lingkaran kecil, seperti pada gambar. Luas daerah irisan kedua lingkaran adalah ....
A). $ 18\pi + 18 \, $ B). $ 18\pi - 18 \, $
C). $ 14\pi + 14 \, $ D). $ 14\pi - 15 \, $
E). $ 10\pi + 10 $
Nomor 9
Jika $ \int_{-4}^4 f(x) (\sin x + 1) dx = 8 $ , dengan $ f(x) $ fungsi genap dan $ \int_{-2}^4 f(x) dx = 4 $ , maka $ \int_{-2}^0 f(x) dx = .... $
A). $ 0 \, $ B). $ 1 \, $ C). $ 2 \, $ D). $ 3 \, $ E). $ 4 $
Nomor 10
$ \displaystyle \lim_{x \to -3} \frac{\tan (x+3)}{(x^2-2x-15)\sin \left(\frac{\pi}{2}x\right)} = .... $
A). $ -\frac{1}{8} \, $ B). $ -\frac{1}{4} \, $ C). $ 0 \, $ D). $ \frac{1}{4} \, $ E). $ \frac{1}{8} $

Nomor 11
$ \displaystyle \lim_{y \to \infty } y . \sin \frac{3}{y}. \cos \frac{5}{y} = .... $
A). $ 0 \, $ B). $ 1 \, $ C). $ 2 \, $ D). $ 3 \, $ E). $ 4 $
Nomor 12
Diketahui fungsi $ f(x) = \frac{ax+5}{\sqrt{x^2+bx+1}} $ dengan $ a > 0 $ dan $ b<0 $. Jika grafik fngsi $ f $ mempunyai satu asimtot tegak dan salah satu asimtot datarnya adalah $ y = -3 $ , maka $ a + 2b $ adalah .....
A). $ -2 \, $ B). $ -1 \, $ C). $ 0 \, $ D). $ 1 \, $ E). $ 2 $
Nomor 13
Misalkan $ f(x) = \sin (\sin x. \cos x ) $ , maka $ f^\prime (x) = .... $
A). $ \cos ( \sin x . \cos x ) \, $
B). $ \sin (\cos ^2 x - \sin ^2 x) \, $
C). $ \cos (\sin x) . \cos x ( \cos x) \, $
D). $ \cos 2x . \cos \left( \frac{1}{2} \sin 2x \right) \, $
E). $ \sin 2x . \cos (\sin x . \cos x) $
Nomor 14
Jika garis singgung dari kurva $ y = px^3 - qx^2 + 1 $ di $ x = 2 $ adalah $ y - 2x + 5 = 0 $ , maka $ 2pq = .... $
A). $ 5 \, $ B). $ 4 \, $ C). $ 3 \, $ D). $ 2 \, $ E). $ 1 $
Nomor 15
Di dalam kotak I terdapat 12 bola putih dan 3 bola merah. Di dalam kotak II terdapat 4 bola putih dan 4 bola merah. Jika dari kotak I dan kotak II masing-masing diambil 2 bola satu per satu dengan pengembalia, maka peluang yang terambil adalah 1 bola merah adalah .....
A). $ 0,04 \, $ B). $ 0,10 \, $ C). $ 0,16 \, $ D). $ 0,32 \, $ E). $ 0,40 $

Tidak ada komentar:

Posting Komentar