Soal dan Pembahasan SBMPTN 2017 Matematika Dasar Kode 268


Nomor 1
Misalkan $ A^T $ adalah transpos matriks A dan $ I = \left( \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right) $. Jika $ A = \left( \begin{matrix} 2 & 0 \\ a & b \end{matrix} \right) $ sehingga $ 3A = 2A^T + 2I $ , maka nilai $ 3a + 2b $ adalah ....
Nomor 2
Jika himpunan penyelesaian $ |2x - a| < 5 $ adalah $ \{ x| -1 < x < 4 \} $ , maka nilai $ a $ adalah ....
A). $ -4 \, $ B). $ -3 \, $ C). $ -1 \, $ D). $ 3 \, $ E). $ 4 $
Nomor 3
Pada segitiga siku-siku samakaki ABC, sisi AB dan BC masing-masing terbagi menjadi tiga bagian yang sama, berturut-turut oleh titik K, L, dan M, N. Jika luas $ \Delta ABC $ adalah $ x $ cm$^2$, maka luas $\Delta KMN $ adalah .... cm$^2$
A). $ \frac{x}{3} \, $ B). $ \frac{2x}{9} \, $ C). $ \frac{x}{9} \, $ D). $ \frac{x}{18} \, $ E). $ \frac{x}{36} $
Nomor 4
Jarak antara dua titik potong grafik fungsi hasil bagi $ f(x) = x^2 - 4 $ oleh $ g(x) = \frac{x-2}{x-4} $ dengan sumbu X adalah ....
Nomor 5
Diketahui median dan rata-rata berat badan 5 balita adalah sama. Setelah ditambahkan satu data berat badan balita, rata-ratanya meningkat 1 kg, sedangkan mediannya tetap. Jika 6 data berat badan tersebut diurutkan dari yang paling ringan ke yang paling berat, maka selisih berat badan antara balita terakhir yang ditambahkan dan balita diurutan ke-4 adalah .... kg.
A). $ 4 \, $ B). $ \frac{9}{2} \, $ C). $ 5 \, $ D). $ 6 \, $ E). $ \frac{13}{2} \, $

Nomor 6
Hasil bagi suku pertama oleh suku ke-5 suatu barisan aritmetika adalah $ -\frac{1}{7}$. Jika suku ke-6 barisan tersebut adalah 9, maka suku ke-8 adalah ....
A). $ 10 \, $ B). $ 11 \, $ C). $ 13 \, $ D). $ 15 \, $ E). $ 17 $
Nomor 7
Seseorang memelihara ikan di suatu kolam. Rata-rata bobot ikan per ekor pada saat panen dari kolam tersebut adalah $(6-0,02x) \, $ kg, dengan $ x $ menyatakan banyak ikan yang dipelihara. Maksimum total bobot semua ikan pada saat panen yang mungkin adalah .... kg.
A). $ 400 \, $ B). $ 420 \, $ C). $ 435 \, $ D). $ 450 \, $ E). $ 465 $
Nomor 8
Enam bilangan asli membentuk suatu barisan geometri. Jika jumlah 2 suku pertamanya adalah 648 dan jumlah 2 suku terakhirnya adalah 8, maka jumlah dua suku yang sisanya adalah ...
Nomor 9
Diketahui fungsi $ f(x) = 2x - 4 $ dan $ g(x) = x^2 + ax + b $. Jika $ (g \circ f)(2) = 2 $ dan $ (g\circ f)(3) = 8 $ , maka nilai $ a + b $ adalah ....
A). $ 1 \, $ B). $ 2 \, $ C). $ 3 \, $ D). $ 4 \, $ E). $ 5 $
Nomor 10
Diketahui kubus ABCD.EFGH dengan P adalah titik tengah CG dan Q adalah titik tengah AP, seperti pada gambar. Jika panjang rusuk kubus tersebut adalah 6 cm, maka jarak Q ke H adalah .... cm

Nomor 11
Luas daerah penyelesaian sistem pertidaksamaan $ 2x+y \leq -2 $, $ x - y \leq 5 $ , $ x \geq 0 $ adalah .... satuan luas.
Nomor 12
Titik (3,1) dicerminkan terhadap garis $ y = x $ dan kemudian ditranslasi dengan $ \left( \begin{matrix} a \\ b \end{matrix} \right) $ ke titik (5,0). Peta titik (1,3) di bawah transformasi yang sama adalah ....
Nomor 13
$ \int 9x^2 \sqrt{8-x^3} dx = .... $
Nomor 14
Jika $ f(x) = ax+b $ dan $ \displaystyle \lim_{x \to 2} \frac{2-x}{xf(x)} = -\frac{1}{2} $, maka $ f(1) = .... $
Nomor 15
Lima baju dipindahkan secara acak dari lemari yang berisi 15 baju merah, 10 baju putih, dan 5 baju hijau. Peluang terambilnya 2 baju merah, 1 baju putih dan 2 baju hijau adalah ....

Tidak ada komentar:

Posting Komentar

Catatan: Hanya anggota dari blog ini yang dapat mengirim komentar.