Pembahasan Daerah Asal SBMPTN 2017 Matematika Dasar kode 233

Soal yang Akan Dibahas
Jika $ f(x) = \frac{3-x}{x+1} $ dan $ g(x) = \frac{2-2x}{x-1} $, maka daerah asal $ f. g $ adalah ....
A). $\{ x | -\infty < x < \infty \} $
B). $\{ x | x \neq -1 \} $
C). $\{ x | x \neq -1 \, \text{ dan } \, x \neq 1 \} $
D). $\{ x | x < -1 \, \text{ atau } \, x > 1 \} $
B). $\{ x | -1 < x < 1 \} $

$\spadesuit $ Konsep Dasar Fungsi
*). Domain (daerah asal) fungsi $ f(x) $ adalah nilai $ x $ yang bisa kita substitusi ke fungsi $ f(x) $ sehingga bisa kita hitung nilai fungsinya (biasanya hasilnya bilangan real untuk matematika tingkat SMA).
*). Bentuk $ y = \frac{f(x)}{g(x)} \, $ memiliki daerah asal $ x $ yang memenuhi $ g(x) \neq 0 $
*). Misalkan daerah asal $ f(x) $ adalah $ D_f $, daerah asal fungsi $ g(x) $ adalah $ D_g $, maka daerah asal fungsi $ f.g $ adalah $ D_{f.g} = \{ x | D_f \cap D_g \} $
(irisan dari kedua daerah asal)

$\clubsuit $ Pembahasan
*). Menentukan daerah asal fungsi masing-masing :
$ f(x) = \frac{3-x}{x+1} \rightarrow D_f = \{ x + 1 \neq 0 \} = \{ x \neq -1 \} $
$ g(x) = \frac{2-2x}{x-1} \rightarrow D_g = \{ x - 1 \neq 0 \} = \{ x \neq 1 \} $
*). Menentukan daerah asal $ f.g $ :
$\begin{align} D_{f.g} & = D_f \cap D_g \\ & = \{ x \neq -1 \} \cap \{ x \neq 1 \} \\ & = \{ x | x \neq -1 \, \text{ dan } \, x \neq 1 \} \end{align} $
Jadi, $ D_{f.g} = \{ x | x \neq -1 \, \text{ dan } \, x \neq 1 \} . \, \heartsuit $

Tidak ada komentar:

Posting Komentar