Soal dan Pembahasan SBMPTN 2016 Matematika Dasar Kode 350


Nomor 1
Jika akar-akar $ 3x^2 + ax - 2 = 0 $ dan $ 2x^2 + 6x + 3b = 0 $ saling berkebalikan, maka $ b - a = .... $
A). $ -7 \, $ B). $ -5 \, $ C). $ 5 \, $ D). $ 6 \, $ E). $ 7 $
Nomor 2
Jika $ A^{2x} = 2 $, maka $ \frac{A^{5x} - A^{-5x}}{A^{3x} + A^{-3x} } = .... $
A). $\frac{31}{18} \, $ B). $\frac{31}{9} \, $ C). $ \frac{32}{18} \, $ D). $ \frac{33}{9} \, $ E). $ \frac{33}{18} $
Nomor 3
Suatu garis yang melalui titik $(0,0)$ membagi persegipanjang dengan titik-titik sudut (1,2), (5,0), (1,12), dan (5,12) menjadi dua bagian yang sama luas. Gradien garis tersebut adalah ....
A). $ \frac{1}{2} \, $ B). $ 1 \, $ C). $ 2 \, $ D). $ \frac{12}{5} \, $ E). $ 3 $
Nomor 4
Semua bilangan real $ x $ yang memenuhi $ \frac{x}{x-3} \leq \frac{x+3}{x+2} \, $ adalah ....
A). $ x \leq -\frac{9}{2} \, $ atau $ x > 3 \, $
B). $ x \leq -\frac{9}{2} \, $ atau $ -2 < x < 3 \, $
C). $ -\frac{9}{2} < x < -2 \, $ atau $ x > 3 \, $
D). $ -\frac{9}{2} \leq x < 3 \, $
E). $ x < -3 \, $ atau $ -2 < x < 3 \, $
Nomor 5
Jika grafik fungsi $ y = x^2 - (9+a)x + 9a \, $ diperoleh dari grafik fungsi $ y = x^2 - 2x - 3 \, $ melalui pencerminan terhadap garis $ x = 4 $ , maka $ a = .... $
A). $ 7 \, $ B). $ 5 \, $ C). $ 3 \, $ D). $ -5 \, $ E). $ -7 \, $
Nomor 6
Tujuh finalis lomba menyanyi tingkat SMA di suatu kota berasal dari 6 SMA yang berbeda terdiri atas empat pria dan tiga wanita. Diketahui satu pria dan satu wanita berasal dari SMA "A". Jika urutan tampil diatur bergantian antara pria dan wanita, serta finalis dari SMA "A" tidak tampil berurutan, maka susunan urutan tampil yang mungkin ada sebanyak ....
A). $ 144 \, $ B). $ 108 \, $ C). $ 72 \, $ D). $ 36 \, $ E). $ 35 $
Nomor 7
Jika $ f(x^2) = x \, $ dan $ g\left( \frac{x+1}{x} \right) = x $ , $ x > 0 $ , maka $ (g \circ f)(4) = .... $
A). $ -1 \, $ B). $ 1 \, $ C). $ 2 \, $ D). $ 3 \, $ E). $ 4 $
Nomor 8
Jika fungsi $ f $ dan $ g $ mempunyai invers dan memenuhi $ f(x) = g(4 - 2x) $, maka $ f^{-1}(x) = .... $
A). $ g^{-1}(4-2x) \, $ B). $ g^{-1}\left( 2 - \frac{x}{2} \right) \, $
C). $ 4 - 2g^{-1}(x) \, $ D). $ 2 - \frac{ g^{-1}(x) }{2} \, $
E). $ 4 - \frac{ g^{-1}(x) }{2} $
Nomor 9
Diketahui $ A = \left( \begin{matrix} 8 & a \\ a & 1 \end{matrix} \right) $ , $ B = \left( \begin{matrix} 1 & -1 \\ b & 1 \end{matrix} \right) $ , dan C adalah matriks berukuran $ 2 \times 2 $ yang mempunyai invers. Jika AC dan BC tidak memiliki invers, maka $ 3a^2 + 4b^3 = .... $
A). $ 16 \, $ B). $ 20 \, $ C). $ 24 \, $ D). $ 28 \, $ E). $ 36 $
Nomor 10
Misalkan $ U_k $ dan $ S_k $ berturut-turut menyatakan suku ke-$k$ dan jumlah $ k $ suku pertama suatu barisan aritmetika. Jika $ U_2 + U_4 + U_6+U_8 + U_{10}+U_{12} = 72 $, maka $ S_{13} = .... $
A). $ 81 \, $ B). $ 144 \, $ C). $ 156 \, $ D). $ 194 \, $ E). $ 312 $
Nomor 11
Diketahui segitiga ABC siku-siku di B, lengkungan BD dan BE berturut-turut adalah busur lingkaran yang berpusat di C dan A seperti pada gambar. Jika $ AB = BC = 2 $ , maka luas daerah yang diarsir adalah .... cm$^2$.
A). $ 4 - \pi \, $ B). $ 2 - \pi \, $ C). $ 2 \, $
D). $ 2 + \pi \, $ E). $ 4 + \pi $
Nomor 12
Seorang siswa mengikuti 6 kali ujian dengan nilai 5 ujian pertama adalah 6, 4, 8, 5, dan 7. Jika semua nilai dinyatakan dalam bilangan asli yang tidak lebih besar daripada 10 dan rata-rata 6 kali ujian lebih kecil dari mediannya, maka nilai ujian terkahir yang mungkin ada sebanyak ....
A). $ 2 \, $ B). $ 3 \, $ C). $ 4 \, $ D). $ 6 \, $ E). $ 8 $
Nomor 13
Jika $ \displaystyle \lim_{x \to -2} \frac{bx^2 + 15x + 15 + b }{x^2 + x - 2} \, $ ada, maka nilai $ b $ dan nilai lmit tersebut berturut-turut adalah ....
A). 1 dan 0
B). 1 dan 1
C). 3 dan $ -1 $
D). 3 dan 1
E). 5 dan 0
Nomor 14
Sistem persamaan $ x + 2y = a $ , $ 2x + 3y = b $ , dan $ 5x + 8y = c $ memiliki solusi untuk $ c = .... $
A). $ -a + 2b \, $
B). $ a - 2b \, $
C). $ a + 2b \, $
D). $ 2a - b \, $
E). $ 2a + b \, $
Nomor 15
Semua bilangan real $ x $ yang memenuhi $ \frac{|x-2|+x}{2 - |x-2|} < 1 \, $ adalah ....
A). $ x < 0 \, $
B). $ -2 < x < 2 $
C). $ 0 < x < 4 \, $
D). $ x < 0 \, $ atau $ x > 4 $
E). $ x > 4 $

Tidak ada komentar:

Posting Komentar