Soal yang Akan Dibahas
Gaji karyawan suatu perusahaan digolongkan menurut golongan I, II, dan III, dengan jumlah
karyawan berturut-turut 6, 8 dan 4 orang. Gaji karyawan golongan I adalah 2 juta kurangnya
dari gaji karyawan golongan II, sedangkan gaji karyawan golongan III adalah 3 juta lebihnya
dari gaji karyawan golongan II. Jika gaji rata-rata semua karyawan adalah 6 juta, maka gaji
rata-rata gabungan golongan I dan III adalah ... juta.
A). $ 5 \, $ B). $ 5,4 \, $ C). $ 5,5 \, $ D). $ 5,8 $ E). $ 6 $
A). $ 5 \, $ B). $ 5,4 \, $ C). $ 5,5 \, $ D). $ 5,8 $ E). $ 6 $
$\spadesuit $ Konsep Dasar :
*). Rumus rata-rata $ (\overline{X} ) $ :
$ \overline{X} = \frac{\text{jumlah semua nilai}}{\text{banyak nilai}} $
*). Rumus rata-rata $ (\overline{X} ) $ :
$ \overline{X} = \frac{\text{jumlah semua nilai}}{\text{banyak nilai}} $
$\clubsuit $ Pembahasan
*). Misalkan besar gaji masing-masing golongan untuk setiap orangnya :
Golongan I sebesar $ a $, Golongan II sebesar $ b $ , dan Golongan III sebesar $ c $.
*). Menyusun persamaan :
-). golongan I adalah 2 juta kurangnya dari gaji karyawan golongan II
$ a = b - 2 \, $ ....(i)
-). golongan III adalah 3 juta lebihnya dari gaji karyawan golongan II
$ c = b + 3 \, $ ....(ii)
-). gaji rata-rata semua karyawan adalah 6 juta
$ \begin{align} \frac{\text{total gaji}}{\text{total orang}} & = 6 \\ \frac{6a + 8b + 4c}{6 + 8 + 4} & = 6 \\ \frac{6a + 8b + 4c}{18} & = 6 \\ 6a + 8b + 4c & = 108 \, \, \, \, \, \, \text{(bagi 2)} \\ 3a + 4b + 2c & = 54 \, \, \, \, \, \, \text{....(iii)} \\ \end{align} $
*). Substitusi pers(i) dan (ii) ke (iii) :
$ \begin{align} 3a + 4b + 2c & = 54 \\ 3(b-2) + 4b + 2(b+3) & = 54 \\ 3b - 6 + 4b + 2b + 6 & = 54 \\ 9b & = 54 \\ b & = 6 \end{align} $
Sehingga nilai yang lainnya :
$ a = b - 2 = 6 - 2 = 4 $
$ c = b + 3 = 6 + 3 = 9 $
*). Menentukan rata-rata gaji golongan I dan III
$ \begin{align} \overline{X}_{\text{I dan II}} & = \frac{\text{total gaji I + total gaji III}}{\text{total orang I + III}} \\ & = \frac{6a + 4c}{6+4} = \frac{6.4 + 4.9}{10} \\ & = \frac{24 + 36}{10} = \frac{60}{10} = 6 \end{align} $
Jadi, rata-rata gaji golongan I dan III adalah 6 juta $ . \, \heartsuit $
*). Misalkan besar gaji masing-masing golongan untuk setiap orangnya :
Golongan I sebesar $ a $, Golongan II sebesar $ b $ , dan Golongan III sebesar $ c $.
*). Menyusun persamaan :
-). golongan I adalah 2 juta kurangnya dari gaji karyawan golongan II
$ a = b - 2 \, $ ....(i)
-). golongan III adalah 3 juta lebihnya dari gaji karyawan golongan II
$ c = b + 3 \, $ ....(ii)
-). gaji rata-rata semua karyawan adalah 6 juta
$ \begin{align} \frac{\text{total gaji}}{\text{total orang}} & = 6 \\ \frac{6a + 8b + 4c}{6 + 8 + 4} & = 6 \\ \frac{6a + 8b + 4c}{18} & = 6 \\ 6a + 8b + 4c & = 108 \, \, \, \, \, \, \text{(bagi 2)} \\ 3a + 4b + 2c & = 54 \, \, \, \, \, \, \text{....(iii)} \\ \end{align} $
*). Substitusi pers(i) dan (ii) ke (iii) :
$ \begin{align} 3a + 4b + 2c & = 54 \\ 3(b-2) + 4b + 2(b+3) & = 54 \\ 3b - 6 + 4b + 2b + 6 & = 54 \\ 9b & = 54 \\ b & = 6 \end{align} $
Sehingga nilai yang lainnya :
$ a = b - 2 = 6 - 2 = 4 $
$ c = b + 3 = 6 + 3 = 9 $
*). Menentukan rata-rata gaji golongan I dan III
$ \begin{align} \overline{X}_{\text{I dan II}} & = \frac{\text{total gaji I + total gaji III}}{\text{total orang I + III}} \\ & = \frac{6a + 4c}{6+4} = \frac{6.4 + 4.9}{10} \\ & = \frac{24 + 36}{10} = \frac{60}{10} = 6 \end{align} $
Jadi, rata-rata gaji golongan I dan III adalah 6 juta $ . \, \heartsuit $
Tidak ada komentar:
Posting Komentar
Catatan: Hanya anggota dari blog ini yang dapat mengirim komentar.