Pembahasan Logaritma Simak UI 2018 Matematika Dasar kode 632

Soal yang Akan Dibahas
Jika $ 2 \log \left(a^\frac{3}{2}b^\frac{7}{2}c^\frac{11}{2} \right) - 2\log (bc) = 3\log (b^{x+y}a) - 3\log c^{x-y} $ , maka $ \frac{x}{y} = ... $
A). $ -\frac{2}{3} \, $ B). $ -\frac{2}{5} \, $ C). $ -\frac{2}{7} \, $ D). $ -\frac{2}{9} \, $ E). $ -\frac{2}{11} \, $

$\spadesuit $ Konsep Dasar
*). Sifat - sifat logaritma :
$ n . {}^a \log b = {}^a \log b^n $
$ {}^a \log b - {}^a \log c = {}^a \log \frac{b}{c} $
*). Sifat eksponen :
$ \frac{a^m}{a^n} = a^{m-n} $
$ (a^m)^n = a^{m.n} $
$ (a.b)^n = a^n . b^n $
$ a^{-n} = \frac{1}{a^n } $
*). Persamaan logaritma dan eksponen :
$ {}^a \log f(x) = {}^a \log g(x) \rightarrow f(x) = g(x) $
$ a^x . b^y . c^z = a^m.b^n.c^r \rightarrow x = m, \, y = n , \, $ dan $ z = r $

$\clubsuit $ Pembahasan
*).Menyelesaikan soal :
$\begin{align} 2 \log \left(a^\frac{3}{2}b^\frac{7}{2}c^\frac{11}{2} \right) - 2\log (bc) & = 3\log (b^{x+y}a) - 3\log c^{x-y} \\ \log \left(a^\frac{3}{2}b^\frac{7}{2}c^\frac{11}{2} \right)^2 - \log (bc)^2 & = \log (b^{x+y}a)^3 - \log (c^{x-y})^3 \\ \log \left(a^3b^7c^{11} \right) - \log (b^2c^2) & = \log (b^{3x+3y}a^3) - \log c^{3x-3y} \\ \log \left( \frac{a^3b^7c^{11} }{b^2c^2} \right) & = \log \left( \frac{b^{3x+3y}a^3}{c^{3x-3y}} \right) \\ \frac{a^3b^7c^{11} }{b^2c^2} & = \frac{b^{3x+3y}a^3}{c^{3x-3y}} \\ a^3b^5c^9 & = b^{3x+3y}a^3 c^{-(3x-3y)} \\ a^3b^5c^9 & = b^{3x+3y}a^3 c^{- 3x + 3y } \\ a^3b^5c^9 & = a^3 b^{3x+3y} c^{- 3x + 3y } \end{align} $
Dari bentuk terakhir kita peroleh kesamaan :
$ 3x + 3y = 5 \, $ .....(i)
$ -3x + 3y = 9 \, $ .....(ii)
*). Eliminasi kedua persamaan :
$ \begin{array}{cc} 3x + 3y = 5 & \\ -3x + 3y = 9 & + \\ \hline 6y = 14 & \\ y = \frac{7}{3} & \end{array} $
*). Menentukan nilai $ x $ dari Pers(i):
$ 3x + 3y = 5 \rightarrow 3x + 3. \frac{7}{3} = 5 $
$ \rightarrow 3x = -2 \rightarrow x = \frac{-2}{3} $
*).Menentukan nilai $ \frac{x}{y} $ :
$\begin{align} \frac{x}{y} & = \frac{ \frac{-2}{3} }{\frac{7}{3}} = -\frac{2}{7} \end{align} $
Jadi, nilai $ \frac{x}{y} = -\frac{2}{7} . \, \heartsuit $

Tidak ada komentar:

Posting Komentar